Do you want to publish a course? Click here

Sequence to Sequence -- Video to Text

275   0   0.0 ( 0 )
 Publication date 2015
and research's language is English




Ask ChatGPT about the research

Real-world videos often have complex dynamics; and methods for generating open-domain video descriptions should be sensitive to temporal structure and allow both input (sequence of frames) and output (sequence of words) of variable length. To approach this problem, we propose a novel end-to-end sequence-to-sequence model to generate captions for videos. For this we exploit recurrent neural networks, specifically LSTMs, which have demonstrated state-of-the-art performance in image caption generation. Our LSTM model is trained on video-sentence pairs and learns to associate a sequence of video frames to a sequence of words in order to generate a description of the event in the video clip. Our model naturally is able to learn the temporal structure of the sequence of frames as well as the sequence model of the generated sentences, i.e. a language model. We evaluate several variants of our model that exploit different visual features on a standard set of YouTube videos and two movie description datasets (M-VAD and MPII-MD).



rate research

Read More

We propose a framework for sequence-to-sequence contrastive learning (SeqCLR) of visual representations, which we apply to text recognition. To account for the sequence-to-sequence structure, each feature map is divided into different instances over which the contrastive loss is computed. This operation enables us to contrast in a sub-word level, where from each image we extract several positive pairs and multiple negative examples. To yield effective visual representations for text recognition, we further suggest novel augmentation heuristics, different encoder architectures and custom projection heads. Experiments on handwritten text and on scene text show that when a text decoder is trained on the learned representations, our method outperforms non-sequential contrastive methods. In addition, when the amount of supervision is reduced, SeqCLR significantly improves performance compared with supervised training, and when fine-tuned with 100% of the labels, our method achieves state-of-the-art results on standard handwritten text recognition benchmarks.
Text-video retrieval is a challenging task that aims to search relevant video contents based on natural language descriptions. The key to this problem is to measure text-video similarities in a joint embedding space. However, most existing methods only consider the global cross-modal similarity and overlook the local details. Some works incorporate the local comparisons through cross-modal local matching and reasoning. These complex operations introduce tremendous computation. In this paper, we design an efficient global-local alignment method. The multi-modal video sequences and text features are adaptively aggregated with a set of shared semantic centers. The local cross-modal similarities are computed between the video feature and text feature within the same center. This design enables the meticulous local comparison and reduces the computational cost of the interaction between each text-video pair. Moreover, a global alignment method is proposed to provide a global cross-modal measurement that is complementary to the local perspective. The global aggregated visual features also provide additional supervision, which is indispensable to the optimization of the learnable semantic centers. We achieve consistent improvements on three standard text-video retrieval benchmarks and outperform the state-of-the-art by a clear margin.
348 - Liang Wang , Wei Zhao , Ruoyu Jia 2019
This paper presents a new sequence-to-sequence (seq2seq) pre-training method PoDA (Pre-training of Denoising Autoencoders), which learns representations suitable for text generation tasks. Unlike encoder-only (e.g., BERT) or decoder-only (e.g., OpenAI GPT) pre-training approaches, PoDA jointly pre-trains both the encoder and decoder by denoising the noise-corrupted text, and it also has the advantage of keeping the network architecture unchanged in the subsequent fine-tuning stage. Meanwhile, we design a hybrid model of Transformer and pointer-generator networks as the backbone architecture for PoDA. We conduct experiments on two text generation tasks: abstractive summarization, and grammatical error correction. Results on four datasets show that PoDA can improve model performance over strong baselines without using any task-specific techniques and significantly speed up convergence.
In this work, we model abstractive text summarization using Attentional Encoder-Decoder Recurrent Neural Networks, and show that they achieve state-of-the-art performance on two different corpora. We propose several novel models that address critical problems in summarization that are not adequately modeled by the basic architecture, such as modeling key-words, capturing the hierarchy of sentence-to-word structure, and emitting words that are rare or unseen at training time. Our work shows that many of our proposed models contribute to further improvement in performance. We also propose a new dataset consisting of multi-sentence summaries, and establish performance benchmarks for further research.
In Mandarin text-to-speech (TTS) system, the front-end text processing module significantly influences the intelligibility and naturalness of synthesized speech. Building a typical pipeline-based front-end which consists of multiple individual components requires extensive efforts. In this paper, we proposed a unified sequence-to-sequence front-end model for Mandarin TTS that converts raw texts to linguistic features directly. Compared to the pipeline-based front-end, our unified front-end can achieve comparable performance in polyphone disambiguation and prosody word prediction, and improve intonation phrase prediction by 0.0738 in F1 score. We also implemented the unified front-end with Tacotron and WaveRNN to build a Mandarin TTS system. The synthesized speech by that got a comparable MOS (4.38) with the pipeline-based front-end (4.37) and close to human recordings (4.49).
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا