Do you want to publish a course? Click here

Abstractive Text Summarization Using Sequence-to-Sequence RNNs and Beyond

292   0   0.0 ( 0 )
 Added by Ramesh Nallapati
 Publication date 2016
and research's language is English




Ask ChatGPT about the research

In this work, we model abstractive text summarization using Attentional Encoder-Decoder Recurrent Neural Networks, and show that they achieve state-of-the-art performance on two different corpora. We propose several novel models that address critical problems in summarization that are not adequately modeled by the basic architecture, such as modeling key-words, capturing the hierarchy of sentence-to-word structure, and emitting words that are rare or unseen at training time. Our work shows that many of our proposed models contribute to further improvement in performance. We also propose a new dataset consisting of multi-sentence summaries, and establish performance benchmarks for further research.



rate research

Read More

Pre-trained sequence-to-sequence (seq-to-seq) models have significantly improved the accuracy of several language generation tasks, including abstractive summarization. Although the fluency of abstractive summarization has been greatly improved by fine-tuning these models, it is not clear whether they can also identify the important parts of the source text to be included in the summary. In this study, we investigated the effectiveness of combining saliency models that identify the important parts of the source text with the pre-trained seq-to-seq models through extensive experiments. We also proposed a new combination model consisting of a saliency model that extracts a token sequence from a source text and a seq-to-seq model that takes the sequence as an additional input text. Experimental results showed that most of the combination models outperformed a simple fine-tuned seq-to-seq model on both the CNN/DM and XSum datasets even if the seq-to-seq model is pre-trained on large-scale corpora. Moreover, for the CNN/DM dataset, the proposed combination model exceeded the previous best-performed model by 1.33 points on ROUGE-L.
Contrastive learning models have achieved great success in unsupervised visual representation learning, which maximize the similarities between feature representations of different views of the same image, while minimize the similarities between feature representations of views of different images. In text summarization, the output summary is a shorter form of the input document and they have similar meanings. In this paper, we propose a contrastive learning model for supervised abstractive text summarization, where we view a document, its gold summary and its model generated summaries as different views of the same mean representation and maximize the similarities between them during training. We improve over a strong sequence-to-sequence text generation model (i.e., BART) on three different summarization datasets. Human evaluation also shows that our model achieves better faithfulness ratings compared to its counterpart without contrastive objectives.
Neural sequence-to-sequence models are currently the dominant approach in several natural language processing tasks, but require large parallel corpora. We present a sequence-to-sequence-to-sequence autoencoder (SEQ^3), consisting of two chained encoder-decoder pairs, with words used as a sequence of discrete latent variables. We apply the proposed model to unsupervised abstractive sentence compression, where the first and last sequences are the input and reconstructed sentences, respectively, while the middle sequence is the compressed sentence. Constraining the length of the latent word sequences forces the model to distill important information from the input. A pretrained language model, acting as a prior over the latent sequences, encourages the compressed sentences to be human-readable. Continuous relaxations enable us to sample from categorical distributions, allowing gradient-based optimization, unlike alternatives that rely on reinforcement learning. The proposed model does not require parallel text-summary pairs, achieving promising results in unsupervised sentence compression on benchmark datasets.
This article briefly explains our submitted approach to the DocEng19 competition on extractive summarization. We implemented a recurrent neural network based model that learns to classify whether an articles sentence belongs to the corresponding extractive summary or not. We bypass the lack of large annotated news corpora for extractive summarization by generating extractive summaries from abstractive ones, which are available from the CNN corpus.
182 - Yue Dong , Shuohang Wang , Zhe Gan 2020
Pre-trained neural abstractive summarization systems have dominated extractive strategies on news summarization performance, at least in terms of ROUGE. However, system-generated abstractive summaries often face the pitfall of factual inconsistency: generating incorrect facts with respect to the source text. To address this challenge, we propose Span-Fact, a suite of two factual correction models that leverages knowledge learned from question answering models to make corrections in system-generated summaries via span selection. Our models employ single or multi-masking strategies to either iteratively or auto-regressively replace entities in order to ensure semantic consistency w.r.t. the source text, while retaining the syntactic structure of summaries generated by abstractive summarization models. Experiments show that our models significantly boost the factual consistency of system-generated summaries without sacrificing summary quality in terms of both automatic metrics and human evaluation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا