Do you want to publish a course? Click here

Generation of photovoltage in graphene on a femtosecond time scale through efficient carrier heating

99   0   0.0 ( 0 )
 Added by Klaas-Jan Tielrooij
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

Graphene is a promising material for ultrafast and broadband photodetection. Earlier studies addressed the general operation of graphene-based photo-thermoelectric devices, and the switching speed, which is limited by the charge carrier cooling time, on the order of picoseconds. However, the generation of the photovoltage could occur at a much faster time scale, as it is associated with the carrier heating time. Here, we measure the photovoltage generation time and find it to be faster than 50 femtoseconds. As a proof-of-principle application of this ultrafast photodetector, we use graphene to directly measure, electrically, the pulse duration of a sub-50 femtosecond laser pulse. The observation that carrier heating is ultrafast suggests that energy from absorbed photons can be efficiently transferred to carrier heat. To study this, we examine the spectral response and find a constant spectral responsivity between 500 and 1500 nm. This is consistent with efficient electron heating. These results are promising for ultrafast femtosecond and broadband photodetector applications.



rate research

Read More

The conversion of light into free electron-hole pairs constitutes the key process in the fields of photodetection and photovoltaics. The efficiency of this process depends on the competition of different relaxation pathways and can be greatly enhanced when photoexcited carriers do not lose energy as heat, but instead transfer their excess energy into the production of additional electron-hole pairs via carrier-carrier scattering processes. Here we use Optical pump - Terahertz probe measurements to show that in graphene carrier-carrier scattering is unprecedentedly efficient and dominates the ultrafast energy relaxation of photoexcited carriers, prevailing over optical phonon emission in a wide range of photon wavelengths. Our results indicate that this leads to the production of secondary hot electrons, originating from the conduction band. Since hot electrons in graphene can drive currents, multiple hot carrier generation makes graphene a promising material for highly efficient broadband extraction of light energy into electronic degrees of freedom, enabling high-efficiency optoelectronic applications.
The remarkable gapless and linear band structure of graphene opens up new carrier relaxation channels bridging the valence and the conduction band. These Auger scattering processes change the number of charge carriers and can give rise to a significant multiplication of optically excited carriers in graphene. This is an ultrafast many-particle phenomenon that is of great interest both for fundamental many-particle physics as well as technological applications. Here, we review the research on carrier multiplication in graphene and Landau-quantized graphene including theoretical modelling and experimental demonstration.
213 - J. N. Heyman 2014
We investigated negative photoconductivity in graphene using ultrafast terahertz techniques. Infrared transmission was used to determine the Fermi energy, carrier density and mobility of p-type CVD graphene samples. Time-resolved terahertz photoconductivity measurements using a tunable mid-infrared pump probed these samples at photon energies between 0.35eV to 1.55eV, approximately one half to three times the Fermi energy of the samples. Although interband optical transitions in graphene are blocked for pump photon energies less than twice the Fermi energy, we observe negative photoconductivity at all pump photon energies investigated, indicating that interband excitation is not required to observe this effect. Our results are consistent with a thermalized free carrier population that cools by electron-phonon scattering, but inconsistent with models of negative photoconductivity based on population inversion.
We present a microscopic study on the impact of doping on the carrier dynamics in graphene, in particular focusing on its influence on the technologically relevant carrier multiplication in realistic, doped graphene samples. Treating the time- and momentum-resolved carrier-light, carrier-carrier, and carrier-phonon interactions on the same microscopic footing, the appearance of Auger-induced carrier multiplication up to a Fermi level of 300 meV is revealed. Furthermore, we show that doping favors the so-called hot carrier multiplication occurring within one band. Our results are directly compared to recent time-resolved ARPES measurements and exhibit an excellent agreement on the temporal evolution of the hot carrier multiplication for n- and p-doped graphene. The gained insights shed light on the ultrafast carrier dynamics in realistic, doped graphene samples
We have investigated electron dynamics in top gated graphene by measuring the gate admittance of a diffusive graphene capacitor in a broad frequency range as a function of carrier density. The density of states, conductivity and diffusion constant are deduced from the low frequency gate capacitance, its charging time and their ratio. The admittance evolves from an RC-like to a skin-effect response at GHz frequency with a crossover given by the Thouless energy. The scattering time is found to be independent of energy in the 0 - 200 meV investigated range at room temperature. This is consistent with a random mass model for Dirac Fermions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا