Do you want to publish a course? Click here

Review on carrier multiplication in graphene

277   0   0.0 ( 0 )
 Added by Ermin Malic
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

The remarkable gapless and linear band structure of graphene opens up new carrier relaxation channels bridging the valence and the conduction band. These Auger scattering processes change the number of charge carriers and can give rise to a significant multiplication of optically excited carriers in graphene. This is an ultrafast many-particle phenomenon that is of great interest both for fundamental many-particle physics as well as technological applications. Here, we review the research on carrier multiplication in graphene and Landau-quantized graphene including theoretical modelling and experimental demonstration.



rate research

Read More

145 - D. Brida , A. Tomadin , C. Manzoni 2012
Graphene is emerging as a viable alternative to conventional optoelectronic, plasmonic, and nanophotonic materials. The interaction of light with carriers creates an out-of-equilibrium distribution, which relaxes on an ultrafast timescale to a hot Fermi-Dirac distribution, that subsequently cools via phonon emission. Here we combine pump-probe spectroscopy, featuring extreme temporal resolution and broad spectral coverage, with a microscopic theory based on the quantum Boltzmann equation, to investigate electron-electron collisions in graphene during the very early stages of relaxation. We identify the fundamental physical mechanisms controlling the ultrafast dynamics in graphene, in particular the significant role of ultrafast collinear scattering, enabling Auger processes, including charge multiplication, key to improving photovoltage generation and photodetectors.
Time- and angle-resolved photoemission measurements on two doped graphene samples displaying different doping levels reveal remarkable differences in the ultrafast dynamics of the hot carriers in the Dirac cone. In the more strongly ($n$-)doped graphene, we observe larger carrier multiplication factors ($>$ 3) and a significantly faster phonon-mediated cooling of the carriers back to equilibrium compared to in the less ($p$-)doped graphene. These results suggest that a careful tuning of the doping level allows for an effective manipulation of graphenes dynamical response to a photoexcitation.
Although van der Waals layered transition metal dichalcogenides from transient absorption spectroscopy have successfully demonstrated an ideal carrier multiplication (CM) performance with an onset of nearly 2Eg,interpretation of the CM effect from the optical approach remains unresolved owing to the complexity of many-body electron-hole pairs. We demonstrate the CM effect through simple photocurrent measurements by fabricating the dual-gate P-N junction of a MoTe2 film on a transparent substrate. Electrons and holes were efficiently extracted by eliminating the Schottky barriers in the metal contact and minimizing multiple reflections. The photocurrent was elevated proportionately to the excitation energy. The boosted quantum efficiency confirms the multiple electron-hole pair generation of >2Eg, consistent with CM results from an optical approach, pushing the solar cell efficiency beyond the Shockley-Queisser limit.
Carrier multiplication (CM), a photo-physical process to generate multiple electron-hole pairs by exploiting excess energy of free carriers, is explored for efficient photovoltaic conversion of photons from the blue solar band, predominantly wasted as heat in standard solar cells. Current state-of-the-art approaches with nanomaterials have demonstrated improved CM but are not satisfactory due to high energy loss and inherent difficulties with carrier extraction. Here, we report ultra-efficient CM in van der Waals (vdW) layered materials that commences at the energy conservation limit and proceeds with nearly 100% conversion efficiency. A small threshold energy, as low as twice the bandgap, was achieved, marking an onset of quantum yield with enhanced carrier generation. Strong Coulomb interactions between electrons confined within vdW layers allow rapid electron-electron scattering to prevail over electron-phonon scattering. Additionally, the presence of electron pockets spread over momentum space could also contribute to the high CM efficiency. Combining with high conductivity and optimal bandgap, these superior CM characteristics identify vdW materials for third-generation solar cell.
We present a microscopic study on the impact of doping on the carrier dynamics in graphene, in particular focusing on its influence on the technologically relevant carrier multiplication in realistic, doped graphene samples. Treating the time- and momentum-resolved carrier-light, carrier-carrier, and carrier-phonon interactions on the same microscopic footing, the appearance of Auger-induced carrier multiplication up to a Fermi level of 300 meV is revealed. Furthermore, we show that doping favors the so-called hot carrier multiplication occurring within one band. Our results are directly compared to recent time-resolved ARPES measurements and exhibit an excellent agreement on the temporal evolution of the hot carrier multiplication for n- and p-doped graphene. The gained insights shed light on the ultrafast carrier dynamics in realistic, doped graphene samples
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا