Do you want to publish a course? Click here

Radio and gamma-ray connection in relativistic jets

123   0   0.0 ( 0 )
 Added by Monica Orienti
 Publication date 2015
  fields Physics
and research's language is English
 Authors M. Orienti




Ask ChatGPT about the research

Relativistic jets are one of the most powerful manifestations of the release of energy related to the supermassive black holes at the centre of active galactic nuclei (AGN). Their emission is observed across the entire electromagnetic spectrum, from the radio band to gamma rays. Despite decades of efforts, many aspects of the physics of relativistic jets remain elusive. In particular, the location and the mechanisms responsible for the high-energy emission and the connection of the variability at different wavelengths are among the greatest challenges in the study of AGN. Recent high resolution radio observations of flaring objects locate the high-energy emitting region downstream the jet at parsec scale distance from the central engine, posing questions on the nature of the seed photons upscattered to gamma-rays. Furthermore, monitoring campaigns of the most active blazars indicate that not all the high energy flares have the same characteristics in the various energy bands, even from the same source, making the interpretation of the mechanism responsible for the high-energy emission not trivial. Although the variability of the most luminous blazars is well explained by the shock-in-jet scenario, the sub-class of TeV emitting objects suggests a more complex emission model with velocity gradients in a structured jet. This contribution presents results obtained by recent multiwavelength campaigns of blazars aimed at studying the radio and gamma-ray connection and the physical mechanisms at the basis of the emission in these low and high energy bands.



rate research

Read More

We perform monthly total and polarized intensity imaging of a sample of $gamma$-ray blazars (33 sources) with the Very Long Baseline Array (VLBA) at 43 GHz with the high resolution of 0.1 milliarcseconds. From Summer 2008 to October 2009 several of these blazars triggered Astronomical Telegrams due to a high $gamma$-ray state detected by the Fermi Large Area Telescope (LAT): AO 0235+164, 3C 273, 3C 279, PKS 1510-089, and 3C 454.3. We have found that 1) $gamma$-ray flares in these blazars occur during an increase of the flux in the 43 GHz VLBI core; 2) strong $gamma$-ray activity, consisting of several flares of various amplitudes and durations (weeks to months), is simultaneous with the propagation of a superluminal knot in the inner jet, as found previously for BL Lac (Marscher et al. 2008); 3) coincidence of a superluminal knot with the 43 GHz core precedes the most intense $gamma$-ray flare by 36$pm$24 days. Our results strongly support the idea that the most dramatic $gamma$-ray outbursts of blazars originate in the vicinity of the mm-wave core of the relativistic jet. These results are preliminary and should be tested by future monitoring with the VLBA and Fermi.
Recent analyses of the gamma-ray spectrum from the ultra-luminous infrared galaxy Arp 220 have revealed a discrepancy in the cosmic ray energy injection rates derived from the gamma-rays versus the radio emission. While the observed radio emission is consistent with the star formation rate inferred from infrared observations, a significantly higher cosmic ray population is necessary to accurately model the measured gamma-ray flux. To resolve this discrepancy between the radio and gamma-ray observations, we find that we must increase the cosmic ray energy injection rate and account for an infrared optical depth greater than unity. Raising the energy injection rate naturally raises the total gamma-ray flux but also raises the radio flux unless there is also an increase in the energy loss rate for cosmic ray leptons. A optically thick medium results in an increase in energy losses via inverse Compton for cosmic ray leptons and preserves agreement with submillimeter, millimeter, and infrared wavelength observations.
Blazars are a sub-category of radio-loud active galactic nuclei with relativistic jets pointing towards to the observer. They are well-known for their non-thermal variable emission, which practically extends over the whole electromagnetic spectrum. Despite the plethora of multi-wavelength observations, the issue about the origin of the $gamma$-ray and radio emission in blazar jets remains unsettled. Here, we construct a parametric leptonic model for studying the connection between the $gamma$-ray and radio emission in both steady-state and flaring states of blazars. Assuming that relativistic electrons are injected continuously at a fixed distance from the black hole, we numerically study the evolution of their population as it propagates to larger distances while losing energy due to expansion and radiative cooling. In this framework, $gamma$-ray photons are naturally produced at small distances (e.g. $10^{-3}$ pc) when the electrons are still very energetic, whereas the radio emission is produced at larger distances (e.g. $1$ pc), after the electrons have cooled and the emitting region has become optically thin to synchrotron self-absorption due to expansion. We present preliminary results of our numerical investigation for the steady-state jet emission and the predicted time lags between $gamma$-rays and radio during flares.
Before the launch of the Fermi Gamma-ray Space Telescope satellite only two classes of active galactic nuclei (AGN) were known to generate relativistic jets and thus to emit up to the $gamma$-ray energy range: blazars and radio galaxies, both hosted in giant elliptical galaxies. The discovery by the Large Area Telescope (LAT) on-board the Fermi satellite of variable $gamma$-ray emission from a few radio-loud narrow-line Seyfert 1 galaxies (NLSy1) revealed the presence of an emerging third class of AGN with powerful relativistic jets. Considering that NLSy1 are usually hosted in late-type galaxies with relatively small black hole masses, this finding opened new challenging questions about the nature of these objects, the disc/jet connection, the emission mechanisms at high energies, and the formation of relativistic jets. In this review, I will discuss the broad-band properties of the $gamma$-ray-emitting NLSy1 included in the Fourth Fermi LAT source catalog, highlighting major findings and open questions regarding jet physics, black hole mass estimation, host galaxy and accretion process of these sources in the Fermi era.
122 - T. Hovatta 2010
We have compared the parsec-scale jet linear polarization properties of the Fermi LAT-detected and non-detected sources in the complete flux-density-limited (MOJAVE-1) sample of highly beamed AGN. Of the 123 MOJAVE sources, 30 were detected by the LAT during its first three months of operation. We find that during the era since the launch of Fermi, the unresolved core components of the LAT-detected jets have significantly higher median fractional polarization at 15 GHz. This complements our previous findings that these LAT sources have higher apparent jet speeds, brightness temperatures and Doppler factors, and are preferentially found in higher activity states.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا