Do you want to publish a course? Click here

The Relation between Radio Polarization and Gamma-ray Emission in AGN Jets

124   0   0.0 ( 0 )
 Added by Talvikki Hovatta
 Publication date 2010
  fields Physics
and research's language is English
 Authors T. Hovatta




Ask ChatGPT about the research

We have compared the parsec-scale jet linear polarization properties of the Fermi LAT-detected and non-detected sources in the complete flux-density-limited (MOJAVE-1) sample of highly beamed AGN. Of the 123 MOJAVE sources, 30 were detected by the LAT during its first three months of operation. We find that during the era since the launch of Fermi, the unresolved core components of the LAT-detected jets have significantly higher median fractional polarization at 15 GHz. This complements our previous findings that these LAT sources have higher apparent jet speeds, brightness temperatures and Doppler factors, and are preferentially found in higher activity states.



rate research

Read More

162 - Y. Y. Kovalev 2009
We have compared the radio emission from a sample of parsec-scale AGN jets as measured by the VLBA at 15 GHz, with their associated gamma-ray properties that are reported in the Fermi LAT 3-month bright source list. We find in our radio-selected sample that the gamma-ray photon flux correlates well with the quasi-simultaneously measured compact radio flux density. The LAT-detected jets in our radio-selected complete sample generally have higher compact radio flux densities, and their parsec-scale cores are brighter (i.e., have higher brightness temperature) than the jets in the LAT non-detected objects. This suggests that the jets of bright gamma-ray AGN have preferentially higher Doppler-boosting factors. In addition, AGN jets tend to be found in a more active radio state within several months from LAT-detection of their strong gamma-ray emission. This result becomes more pronounced for confirmed gamma-ray flaring sources. We identify the parsec-scale radio core as a likely location for both the gamma-ray and radio flares, which appear within typical timescales of up to a few months of each other.
We investigate the relation between the two modes of outflow (wind and jet) in radio-loud active galactic nuclei (AGN). For this study we have carried out a systematic and homogeneous analysis of XMM-Newton spectra of a sample of 16 suitable radio-loud Seyfert-1 AGN. The ionised winds in these AGN are parameterised through high-resolution X-ray spectroscopy and photoionisation modelling. We discover a significant inverse correlation between the column density NH of the ionised wind and the radio-loudness parameter R of the jet. We explore different possible explanations for this NH-R relation and find that ionisation, inclination, and luminosity effects are unlikely to be responsible for the observed relation. We argue that the NH-R relation is rather a manifestation of the magnetic driving mechanism of the wind from the accretion disk. Change in the magnetic field configuration from toroidal to poloidal, powering either the wind or the jet mode of the outflow, is the most feasible explanation for the observed decline in the wind NH as the radio jet becomes stronger. Our findings provide evidence for a wind-jet bimodality in radio-loud AGN and shine new light on the link between these two modes of outflow. This has far-reaching consequences for the accretion disk structure and the wind ejection mechanism.
133 - R. Angioni , E. Ros , M. Kadler 2020
Following our study of the radio and high-energy properties of $gamma$-ray-emitting radio galaxies, here we investigate the kinematic and spectral properties of the parsec-scale jets of radio galaxies that have not yet been detected by Fermi-LAT. We take advantage of the regular VLBI observations provided by the TANAMI monitoring program, and explore the kinematic properties of six $gamma$-ray-faint radio galaxies. We include publicly available VLBI kinematics of $gamma$-ray-quiet radio galaxies monitored by the MOJAVE program and perform a Fermi-LAT analysis, deriving upper limits. We combine these results with those from our previous paper to construct the largest sample of radio galaxies with combined VLBI and $gamma$-ray measurements to date. We find superluminal motion up to $beta_mathrm{app}=3.6$ in the jet of PKS 2153$-$69. We find a clear trend of higher apparent speed as a function of distance from the jet core on scales of $sim10^5,R_s$, corresponding to the end of the collimation and acceleration zone in nearby radio galaxies. We find evidence of subluminal apparent motion in the jets of PKS 1258$-$321 and IC 4296, and no measurable motion for PKS 1549$-$79, PKS 1733$-$565 and PKS 2027$-$308. We compare the VLBI properties of $gamma$-ray-detected and undetected radio galaxies, and find significantly different distributions of median core flux density, and, possibly, of median core brightness temperature. We find a significant correlation between median core flux density and $gamma$-ray flux, but no correlation with typical Doppler boosting indicators such as median core brightness temperature and core dominance. Our study suggests that high-energy emission from radio galaxies is related to parsec-scale radio emission from the inner jet, but is not driven by Doppler boosting effects, in contrast to the situation in their blazar counterparts.
We perform monthly total and polarized intensity imaging of a sample of $gamma$-ray blazars (33 sources) with the Very Long Baseline Array (VLBA) at 43 GHz with the high resolution of 0.1 milliarcseconds. From Summer 2008 to October 2009 several of these blazars triggered Astronomical Telegrams due to a high $gamma$-ray state detected by the Fermi Large Area Telescope (LAT): AO 0235+164, 3C 273, 3C 279, PKS 1510-089, and 3C 454.3. We have found that 1) $gamma$-ray flares in these blazars occur during an increase of the flux in the 43 GHz VLBI core; 2) strong $gamma$-ray activity, consisting of several flares of various amplitudes and durations (weeks to months), is simultaneous with the propagation of a superluminal knot in the inner jet, as found previously for BL Lac (Marscher et al. 2008); 3) coincidence of a superluminal knot with the 43 GHz core precedes the most intense $gamma$-ray flare by 36$pm$24 days. Our results strongly support the idea that the most dramatic $gamma$-ray outbursts of blazars originate in the vicinity of the mm-wave core of the relativistic jet. These results are preliminary and should be tested by future monitoring with the VLBA and Fermi.
The advent of Fermi is changing our understanding on the radio and gamma-ray emission in Active Galactic Nuclei. In fact, contrary to previous campaigns, Fermi mission reveals that BL Lac objects are the most abundant emitters in gamma-ray band. However, since they are relatively weak sources, most of their parsec scale structure as their multifrequency properties are poorly understood and/or not systematically investigated. Our main goal is to analyse, using a multiwavelength approach, the nuclear properties of an homogeneous sample of 42 faint BL Lacs, selected, for the first time in literature, with no constraint on their radio and gamma-ray flux densities/emission. We began asking and obtaining new VLBA observations at 8 and 15 GHz for the whole sample. We derived fundamental parameters as radio flux densities, spectral index information, and parsec scale structure. Moreover, we investigated their gamma-ray emission properties using the 2LAT Fermi results. Here, we report our preliminary results on the radio and gamma-ray properties of this sample of faint BL Lacs. In the next future, we will complete the multiwavelength analysis.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا