No Arabic abstract
We report on the systematical study of the second-harmonic generation (SHG) in single zinc sulfide nanowires (ZnS NWs). The high quality ZnS NWs with round cross-section were fabricated by chemical vapor deposition method. The transmission electron microscopy images show that the actual growth-axis has a deviation angle of 0o~20o with the preferential growth direction [120], which leads to the various polarization-dependent SHG response patterns in different individual ZnS NWs. The SHG response is quite sensitive to the orientations of c-axis as well as the (100) and (010) crystal-axis of ZnS NWs, thus all the three crystal-axis orientations of ZnS NWs are precisely determined by the SHG method. A high SHG conversion efficiency of 7*10^(-6) is obtained in single ZnS NWs, which shows potential applications in nanoscale ultraviolet light source, nonlinear optical microscopy and nanophotonic devices.
Semiconductor nanowires (NWs) are promising for realizing various on-chip nonlinear optical devices, due to their nanoscale lateral confinement and strong light-matter interaction. However, high-intensity pulsed pump lasers are typically needed to exploit their optical nonlinearity because light couples poorly with nanometric-size wires. Here, we demonstrate microwatts continuous-wave light pumped second harmonic generation (SHG) in AlGaAs NWs by integrating them with silicon planar photonic crystal cavities. Light-NW coupling is enhanced effectively by the extremely localized cavity mode at the subwavelength scale. Strong SHG is obtained even with a continuous-wave laser excitation with a pump power down to ~3 uW, and the cavity-enhancement factor is estimated around 150. Additionally, in the integrated device, the NWs SHG is more than two-order of magnitude stronger than third harmonic generations in the silicon slab, though the NW only couple s with less than 1% of the cavity mode. This significantly reduced power-requirement of NWs nonlinear frequency conversion would promote NW-based building blocks for nonlinear optics, specially in chip-integrated coherent light sources, entangled photon-pairs and signal processing devices.
We report the observation of optical second harmonic generation (SHG) in single-layer indium selenide (InSe). We measure a second harmonic signal of $>10^3$ $textrm{cts/s}$ under nonresonant excitation using a home-built confocal microscope and a standard pulsed pico-second laser. We demonstrate that polarization-resolved SHG serves as a fast, non-invasive tool to determine the crystal axes in single-layer InSe and to relate the sharp edges of the flake to the armchair and zigzag edges of the crystal structure. Our experiment determines these angles to an accuracy better than $pm$ $0.2^{circ}$. Treating the two-dimensional material as a nonlinear polarizable sheet, we determine a second-order nonlinear sheet polarizability $| chi_{textrm{sheet}}^{(2)}|=(17.9 pm 11.0)times 10^{-20}$ $textrm{m}^2 textrm{V}^{-1}$ for single-layer InSe, corresponding to an effective nonlinear susceptibility value of $| chi_textrm{eff}^{(2)}| approx (223 pm 138) times 10^{-12}$ $textrm{m} textrm{V}^{-1}$ accounting for the sheet thickness ($textrm{d} approx 0.8$ $textrm{nm}$). We demonstrate that the SHG technique can also be applied to encapsulated samples to probe their crystal orientations. The method is therefore suitable for creating high quality van der Waals heterostructures with control over the crystal directions.
We model second harmonic generation in subwavelength III-V-on-insulator waveguides. The large index contrast induces strong longitudinal electric field components that play an important role in the nonlinear conversion. We show that many different waveguide dimensions are suitable for efficient conversion of a fundamental quasi-TE pump mode around the 1550 nm telecommunication wavelength to a higher-order second harmonic mode.
In second harmonic generation, the phase of the optical field is doubled which has important implication. Here the phase doubling effect is utilized to solve a long-standing challenge in power scaling of single frequency laser. When a (-{pi}/2, {pi}/2) binary phase modulation is applied to a single frequency seed laser to broaden the spectrum and suppress the stimulated Brillouin scattering in high power fiber amplifier, the second harmonic of the phase-modulated laser will return to single frequency, because the (-{pi}/2, {pi}/2) modulation is doubled to (-{pi}, {pi}) for the second harmonic. A compression rate as high as 95% is demonstrated in the experiment limited by the electronic bandwidth of the setup, which can be improved with optimized devices.
We present a method, based on noncollinear second harmonic generation, to evaluate the non-zero elements of the nonlinear optical susceptibility. At a fixed incidence angle, the generated signal is investigated by varying the polarization state of both fundamental beams. The resulting polarization charts allows to verify if Kleinman symmetry rules can be applied to a given material or to retrieve the absolute value of the nonlinear optical tensor terms, from a reference measurement. Experimental measurements obtained from Gallium Nitride layers are reported. The proposed method does not require an angular scan thus is useful when the generated signal is strongly affected by sample rotation