Do you want to publish a course? Click here

Optical second harmonic generation in encapsulated single-layer InSe

187   0   0.0 ( 0 )
 Added by Nadine Leisgang
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report the observation of optical second harmonic generation (SHG) in single-layer indium selenide (InSe). We measure a second harmonic signal of $>10^3$ $textrm{cts/s}$ under nonresonant excitation using a home-built confocal microscope and a standard pulsed pico-second laser. We demonstrate that polarization-resolved SHG serves as a fast, non-invasive tool to determine the crystal axes in single-layer InSe and to relate the sharp edges of the flake to the armchair and zigzag edges of the crystal structure. Our experiment determines these angles to an accuracy better than $pm$ $0.2^{circ}$. Treating the two-dimensional material as a nonlinear polarizable sheet, we determine a second-order nonlinear sheet polarizability $| chi_{textrm{sheet}}^{(2)}|=(17.9 pm 11.0)times 10^{-20}$ $textrm{m}^2 textrm{V}^{-1}$ for single-layer InSe, corresponding to an effective nonlinear susceptibility value of $| chi_textrm{eff}^{(2)}| approx (223 pm 138) times 10^{-12}$ $textrm{m} textrm{V}^{-1}$ accounting for the sheet thickness ($textrm{d} approx 0.8$ $textrm{nm}$). We demonstrate that the SHG technique can also be applied to encapsulated samples to probe their crystal orientations. The method is therefore suitable for creating high quality van der Waals heterostructures with control over the crystal directions.



rate research

Read More

Noble metals with well-defined crystallographic orientation constitute an appealing class of materials for controlling light-matter interactions on the nanoscale. Nonlinear optical processes, being particularly sensitive to anisotropy, are a natural and versatile probe of crystallinity in nano-optical devices. Here we study the nonlinear optical response of monocrystalline gold flakes, revealing a polarization dependence in second-harmonic generation from the {111} surface that is markedly absent in polycrystalline films. Apart from suggesting an approach for directional enhancement of nonlinear response in plasmonic systems, we anticipate that our findings can be used as a rapid and non-destructive method for characterization of crystal quality and orientation that may be of significant importance in future applications.
Monolayer transition metal dichalcogenides (TMDs) exhibit high nonlinear optical (NLO) susceptibilities. Experiments on MoS$_2$ have indeed revealed very large second-order ($chi^{(2)}$) and third-order ($chi^{(3)}$) optical susceptibilities. However, third harmonic generation results of other layered TMDs has not been reported. Furthermore, the reported $chi^{(2)}$ and $chi^{(3)}$ of MoS$_2$ vary by several orders of magnitude, and a reliable quantitative comparison of optical nonlinearities across different TMDs has remained elusive. Here, we investigate second- and third-harmonic generation, and three-photon photoluminescence in TMDs. Specifically, we present an experimental study of $chi^{(2)}$, and $chi^{(3)}$ of four common TMD materials (ce{MoS2}, ce{MoSe2}, ce{WS2} and ce{WSe2}) by placing different TMD flakes in close proximity to each other on a common substrate, allowing their NLO properties to be accurately obtained from a single measurement. $chi^{(2)}$ and $chi^{(3)}$ of the four monolayer TMDs have been compared, indicating that they exhibit distinct NLO responses. We further present theoretical simulations of these susceptibilities in qualitative agreement with the measurements. Our comparative studies of the NLO responses of different two-dimensional layered materials allow us to select the best candidates for atomic-scale nonlinear photonic applications, such as frequency conversion and all-optical signal processing.
123 - Sergio G. Rodrigo 2018
Light with light control of surface plasmon polaritons is theoretically demonstrated. A barely simple and compact source of these waves consists in a finite number of slits (evenly spaced) perforating a metal film. The system scatters electromagnetic fields in one side of the metal film when it is illuminated from the opposite side by a polarized light source. High intensity light sources moreover efficiently generate light at second harmonic and higher frequencies in the metal led by optical nonlinearities. It is shown how the mixing of fields scattered by the slits from a weak beam at $lambda$ wavelength, with the second harmonic fields generated by a high intensity $2 lambda$ beam, creates a destructive interference of surface plasmons in one of the two possible directions of emission from the slits, while these are enhanced along the opposite direction. The unidirectional launching of surface plasmons is due to the different properties of symmetry at $lambda$ whether they are linearly or nonlinearly generated. It is envisaged a nanodevice which might allow sending digital information codified in the surface plasmon field or be used to build ultra-narrow bandwidth surface plasmon frequency combs.
Second-order nonlinear effects, such as second-harmonic generation, can be strongly enhanced in nanofabricated photonic materials when both fundamental and harmonic frequencies are spatially and temporally confined. Practically designing low-volume and doubly resonant nanoresonators in conventional semiconductor compounds is challenging owing to their intrinsic refractive index dispersion. In this work we review a recently developed strategy to design doubly resonant nanocavities with low mode volume and large quality factor by localized defects in a photonic crystal structure. We build on this approach by applying an evolutionary optimisation algorithm in connection with Maxwell equations solvers, showing that the proposed design recipe can be applied to any material platform. We explicitly calculate the second-harmonic generation efficiency for doubly resonant photonic crystal cavity designs in typical III-V semiconductor materials, such as GaN and AlGaAs, targeting a fundamental harmonic at telecom wavelengths, and fully accounting for the tensor nature of the respective nonlinear susceptibilities. These results may stimulate the realisation of small footprint photonic nanostructures in leading semiconductor material platforms to achieve unprecedented nonlinear efficiencies.
We present a method, based on noncollinear second harmonic generation, to evaluate the non-zero elements of the nonlinear optical susceptibility. At a fixed incidence angle, the generated signal is investigated by varying the polarization state of both fundamental beams. The resulting polarization charts allows to verify if Kleinman symmetry rules can be applied to a given material or to retrieve the absolute value of the nonlinear optical tensor terms, from a reference measurement. Experimental measurements obtained from Gallium Nitride layers are reported. The proposed method does not require an angular scan thus is useful when the generated signal is strongly affected by sample rotation
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا