Do you want to publish a course? Click here

On higher spin partition functions

211   0   0.0 ( 0 )
 Added by Matteo Beccaria
 Publication date 2015
  fields
and research's language is English




Ask ChatGPT about the research

We observe that the partition function of the set of all free massless higher spins s=0,1,2,3,... in flat space is equal to one: the ghost determinants cancel against the physical ones or, equivalently, the (regularized) total number of degrees of freedom vanishes. This reflects large underlying gauge symmetry and suggests analogy with supersymmetric or topological theory. The Z=1 property extends also to the AdS background, i.e. the 1-loop vacuum partition function of Vasiliev theory is equal to 1 (assuming a particular regularization of the sum over spins); this was noticed earlier as a consistency requirement for the vectorial AdS/CFT duality. We find that Z=1 is also true in the conformal higher spin theory (with higher-derivative d^{2s} kinetic terms) expanded near flat or conformally flat S^4 background. We also consider the partition function of free conformal theory of symmetric traceless rank s tensor field which has 2-derivative kinetic term but only scalar gauge invariance in flat 4d space. This non-unitary theory has a Weyl-invariant action in curved background and corresponds to partially massless field in AdS_5. We discuss in detail the special case of s=2 (or conformal graviton), compute the corresponding conformal anomaly coefficients and compare them with previously found expressions for generic representations of conformal group in 4 dimensions.



rate research

Read More

Modular invariance is known to constrain the spectrum of 2d conformal field theories. We investigate this constraint systematically, using the linear functional method to put new improved upper bounds on the lowest gap in the spectrum. We also consider generalized partition functions of N = (2,2) superconformal theories and discuss the application of our results to Calabi-Yau compactifications. For Calabi-Yau threefolds with no enhanced symmetry we find that there must always be non-BPS primary states of weight 0.6 or less.
300 - M. Beccaria , A.A. Tseytlin 2016
We find a simple relation between a free higher spin field partition function on thermal quotient of AdS(d+1) and the partition function of the associated d-dimensional conformal higher spin field on thermal quotient of AdS(d). Starting with a conformal higher spin field defined on AdS(d) one may also associate to it another conformal field in d-1 dimensions, thus iterating AdS/CFT. We observe that in the case of d=4 this iteration leads to a trivial 3d higher spin conformal theory with parity-even non-local action: it describes zero total number of dynamical degrees of freedom and the corresponding partition function on thermal AdS(3) is equal to 1.
Localization methods have produced explicit expressions for the sphere partition functions of (2,2) superconformal field theories. The mirror symmetry conjecture predicts an IR duality between pairs of Abelian gauged linear sigma models, a class of which describe families of Calabi-Yau manifolds realizable as complete intersections in toric varieties. We investigate this prediction for the sphere partition functions and find agreement between that of a model and its mirror up to the scheme-dependent ambiguities inherent in the definitions of these quantities.
We compute partition functions describing multiplicities and charges of massless and first massive string states of pure-spinor superstrings in 3,4,6,10 dimensions. At the massless level we find a spin-one gauge multiplet of minimal supersymmetry in d dimensions. At the first massive string level we find a massive spin-two multiplet. The result is confirmed by a direct analysis of the BRST cohomology at ghost number one. The central charges of the pure spinor systems are derived in a manifestly SO(d) covariant way confirming that the resulting string theories are critical. A critical string model with N=(2,0) supersymmetry in d=2 is also described.
The partition function of a three-dimensional $mathcal{N} =2$ theory on the manifold $mathcal{M}_{g,p}$, an $S^1$ bundle of degree $p$ over a closed Riemann surface $Sigma_g$, was recently computed via supersymmetric localization. In this paper, we compute these partition functions at large $N$ in a class of quiver gauge theories with holographic M-theory duals. We provide the supergravity bulk dual having as conformal boundary such three-dimensional circle bundles. These configurations are solutions to $mathcal{N}=2$ minimal gauged supergravity and pertain to the class of Taub-NUT-AdS and Taub-Bolt-AdS preserving $1/4$ of the supersymmetries. We discuss the conditions for the uplift of these solutions to M-theory, and compute the on-shell action via holographic renormalization. We show that the uplift condition and on-shell action for the Bolt solutions are correctly reproduced by the large $N$ limit of the partition function of the dual superconformal field theory. In particular, the $Sigma_g times S^1 cong mathcal{M}_{g,0}$ partition function, which was recently shown to match the entropy of $AdS_4$ black holes, and the $S^3 cong mathcal{M}_{0,1}$ free energy, occur as special cases of our formalism, and we comment on relations between them.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا