Do you want to publish a course? Click here

Mirror Symmetry and Partition Functions

157   0   0.0 ( 0 )
 Added by David R. Morrison
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

Localization methods have produced explicit expressions for the sphere partition functions of (2,2) superconformal field theories. The mirror symmetry conjecture predicts an IR duality between pairs of Abelian gauged linear sigma models, a class of which describe families of Calabi-Yau manifolds realizable as complete intersections in toric varieties. We investigate this prediction for the sphere partition functions and find agreement between that of a model and its mirror up to the scheme-dependent ambiguities inherent in the definitions of these quantities.

rate research

Read More

We analyze the locus, together with multiplicities, of bad conformal field theories in the compactified moduli space of N=(2,2) superconformal field theories in the context of the generalization of the Batyrev mirror construction using the gauged linear sigma-model. We find this discriminant of singular theories is described beautifully by the GKZ A-determinant but only if we use a noncompact toric Calabi-Yau variety on the A-model side and logarithmic coordinates on the B-model side. The two are related by local mirror symmetry. The corresponding statement for the compact case requires changing multiplicities in the GKZ determinant. We then describe a natural structure for monodromies around components of this discriminant in terms of spherical functors. This can be considered a categorification of the GKZ A-determinant. Each component of the discriminant is naturally associated with a category of massless D-branes.
The macroscopic entropy and the attractor equations for BPS black holes in four-dimensional N=2 supergravity theories follow from a variational principle for a certain `entropy function. We present this function in the presence of R^2-interactions and non-holomorphic corrections. The variational principle identifies the entropy as a Legendre transform and this motivates the definition of various partition functions corresponding to different ensembles and a hierarchy of corresponding duality invariant inverse Laplace integral representations for the microscopic degeneracies. Whenever the microscopic degeneracies are known the partition functions can be evaluated directly. This is the case for N=4 heterotic CHL black holes, where we demonstrate that the partition functions are consistent with the results obtained on the macroscopic side for black holes that have a non-vanishing classical area. In this way we confirm the presence of a measure in the duality invariant inverse Laplace integrals. Most, but not all, of these results are obtained in the context of semiclassical approximations. For black holes whose area vanishes classically, there remain discrepancies at the semiclassical level and beyond, the nature of which is not fully understood at present.
We discuss a K3 and torus from view point of mirror symmetry. We calculate the periods of the K3 surface and obtain the mirror map, the two-point correlation function, and the prepotential. Then we find there is no instanton correction on K3 (also torus), which is expected from view point of Algebraic geometry.
We obtain the brane setup describing 3d $mathcal{N}=2$ dualities for $USp(2N_c)$ and $U(N_c)$ SQCD with monopole superpotentials. This classification follows from a complete analysis of affine and twisted affine compactifications from 4d. The analysis leads to a new duality for the unitary case that has been previously overlooked in the literature. We check this by matching of the three sphere partition function of the two sides of this new duality and find a perfect agreement. Furthermore we use the partition function to predict new 3d $mathcal{N}=2$ dualities for SQCD with monopole superpotentials and tensorial matter.
We analyze intersecting surface defects inserted in interacting four-dimensional N = 2 supersymmetric quantum field theories. We employ the realization of a class of such systems as the infrared fixed points of renormalization group flows from larger theories, triggered by perturbed Seiberg-Witten monopole-like configurations, to compute their partition functions. These results are cast into the form of a partition function of 4d/2d/0d coupled systems. Our computations provide concrete expressions for the instanton partition function in the presence of intersecting defects and we study the corresponding ADHM model.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا