Do you want to publish a course? Click here

What is the probability that a large random matrix has no real eigenvalues?

127   0   0.0 ( 0 )
 Added by Oleg Zaboronski V
 Publication date 2015
  fields
and research's language is English




Ask ChatGPT about the research

We study the large-$n$ limit of the probability $p_{2n,2k}$ that a random $2ntimes 2n$ matrix sampled from the real Ginibre ensemble has $2k$ real eigenvalues. We prove that, $$lim_{nrightarrow infty}frac {1}{sqrt{2n}} log p_{2n,2k}=lim_{nrightarrow infty}frac {1}{sqrt{2n}} log p_{2n,0}= -frac{1}{sqrt{2pi}}zetaleft(frac{3}{2}right),$$ where $zeta$ is the Riemann zeta-function. Moreover, for any sequence of non-negative integers $(k_n)_{ngeq 1}$, $$lim_{nrightarrow infty}frac {1}{sqrt{2n}} log p_{2n,2k_n}=-frac{1}{sqrt{2pi}}zetaleft(frac{3}{2}right),$$ provided $lim_{nrightarrow infty} left(n^{-1/2}log(n)right) k_{n}=0$.



rate research

Read More

61 - Stephan Wagner 2019
We consider the quantity $P(G)$ associated with a graph $G$ that is defined as the probability that a randomly chosen subtree of $G$ is spanning. Motivated by conjectures due to Chin, Gordon, MacPhee and Vincent on the behaviour of this graph invariant depending on the edge density, we establish first that $P(G)$ is bounded below by a positive constant provided that the minimum degree is bounded below by a linear function in the number of vertices. Thereafter, the focus is shifted to the classical ErdH{o}s-Renyi random graph model $G(n,p)$. It is shown that $P(G)$ converges in probability to $e^{-1/(ep_{infty})}$ if $p to p_{infty} > 0$ and to $0$ if $p to 0$.
We consider the real eigenvalues of an $(N times N)$ real elliptic Ginibre matrix whose entries are correlated through a non-Hermiticity parameter $tau_Nin [0,1]$. In the almost-Hermitian regime where $1-tau_N=Theta(N^{-1})$, we obtain the large-$N$ expansion of the mean and the variance of the number of the real eigenvalues. Furthermore, we derive the limiting empirical distributions of the real eigenvalues, which interpolate the Wigner semicircle law and the uniform distribution, the restriction of the elliptic law on the real axis. Our proofs are based on the skew-orthogonal polynomial representation of the correlation kernel due to Forrester and Nagao.
We show that in the point process limit of the bulk eigenvalues of $beta$-ensembles of random matrices, the probability of having no eigenvalue in a fixed interval of size $lambda$ is given by [bigl( kappa_{beta}+o(1)bigr)lambda^{gamma_{beta}}expbiggl(-{bet a}{64}lambda^2+biggl({beta}{8}-{1}{4}biggr)lambdabiggr)] as $lambdatoinfty$, where [gamma_{beta}={1}{4}biggl({beta}{2}+{2}{beta}-3biggr)] and $kappa_{beta}$ is an undetermined positive constant. This is a slightly corrected version of a prediction by Dyson [J. Math. Phys. 3 (1962) 157--165]. Our proof uses the new Brownian carousel representation of the limit process, as well as the Cameron--Martin--Girsanov transformation in stochastic calculus.
In this paper, we study random matrix models which are obtained as a non-commutative polynomial in random matrix variables of two kinds: (a) a first kind which have a discrete spectrum in the limit, (b) a second kind which have a joint limiting distribution in Voiculescus sense and are globally rotationally invariant. We assume that each monomial constituting this polynomial contains at least one variable of type (a), and show that this random matrix model has a set of eigenvalues that almost surely converges to a deterministic set of numbers that is either finite or accumulating to only zero in the large dimension limit. For this purpose we define a framework (cyclic monotone independence) for analyzing discrete spectra and develop the moment method for the eigenvalues of compact (and in particular Schatten class) operators. We give several explicit calculations of discrete eigenvalues of our model.
82 - Christian Huck 2017
This extends a theorem of Davenport and Erdos on sequences of rational integers to sequences of integral ideals in arbitrary number fields $K$. More precisely, we introduce a logarithmic density for sets of integral ideals in $K$ and provide a formula for the logarithmic density of the set of so-called $mathscr A$-free ideals, i.e. integral ideals that are not multiples of any ideal from a fixed set $mathscr A$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا