No Arabic abstract
We consider the real eigenvalues of an $(N times N)$ real elliptic Ginibre matrix whose entries are correlated through a non-Hermiticity parameter $tau_Nin [0,1]$. In the almost-Hermitian regime where $1-tau_N=Theta(N^{-1})$, we obtain the large-$N$ expansion of the mean and the variance of the number of the real eigenvalues. Furthermore, we derive the limiting empirical distributions of the real eigenvalues, which interpolate the Wigner semicircle law and the uniform distribution, the restriction of the elliptic law on the real axis. Our proofs are based on the skew-orthogonal polynomial representation of the correlation kernel due to Forrester and Nagao.
This paper proves universality of the distribution of the smallest and largest gaps between eigenvalues of generalized Wigner matrices, under some smoothness assumption for the density of the entries. The proof relies on the Erd{H o}s-Schlein-Yau dynamic approach. We exhibit a new observable that satisfies a stochastic advection equation and reduces local relaxation of the Dyson Brownian motion to a maximum principle. This observable also provides a simple and unified proof of universality in the bulk and at the edge, which is quantitative. To illustrate this, we give the first explicit rate of convergence to the Tracy-Widom distribution for generalized Wigner matrices.
We survey recent mathematical results about the spectrum of random band matrices. We start by exposing the Erd{H o}s-Schlein-Yau dynamic approach, its application to Wigner matrices, and extension to other mean-field models. We then introduce random band matrices and the problem of their Anderson transition. We finally describe a method to obtain delocalization and universality in some sparse regimes, highlighting the role of quantum unique ergodicity.
This is a brief survey of classical and recent results about the typical behavior of eigenvalues of large random matrices, written for mathematicians and others who study and use matrices but may not be accustomed to thinking about randomness.
We extend the random characteristics approach to Wigner matrices whose entries are not required to have a normal distribution. As an application, we give a simple and fully dynamical proof of the weak local semicircle law in the bulk.
This paper considers the empirical spectral measure of a power of a random matrix drawn uniformly from one of the compact classical matrix groups. We give sharp bounds on the $L_p$-Wasserstein distances between this empirical measure and the uniform measure on the circle, which show a smooth transition in behavior when the power increases and yield rates on almost sure convergence when the dimension grows. Along the way, we prove the sharp logarithmic Sobolev inequality on the unitary group.