No Arabic abstract
The goal of Point Distance Solving Problems is to find 2D or 3D placements of points knowing distances between some pairs of points. The common guideline is to solve them by a numerical iterative method (emph{e.g.} Newton-Raphson method). A sole solution is obtained whereas many exist. However the number of solutions can be exponential and methods should provide solutions close to a sketch drawn by the user.Geometric reasoning can help to simplify the underlying system of equations by changing a few equations and triangularizing it.This triangularization is a geometric construction of solutions, called construction plan. We aim at finding several solutions close to the sketch on a one-dimensional path defined by a global parameter-homotopy using a construction plan. Some numerical instabilities may be encountered due to specific geometric configurations. We address this problem by changing on-the-fly the construction plan.Numerical results show that this hybrid method is efficient and robust.
Homotopy methods have been widely utilized to solve low-thrust orbital transfer problems, however, it is not guaranteed that the optimal solution can be obtained by the existing homotopy methods. In this paper, a new homotopy method is presented, by which the optimal solution can be found with probability one. Generalized sufficient conditions, which are derived from the parametrized Sards theorem, are first developed. A new type of probability-one homotopy formulation, which is custom-designed for solving minimum-time low-thrust trajectory optimization problems and satisfies all these sufficient conditions, is then constructed. By tracking the continuous zero curve initiated by an initial problem with known solution, the optimal solution of the original problem is guaranteed to be solved with probability one. Numerical demonstrations in a three-dimensional time-optimal low-thrust orbital transfer problem with 43 revolutions is presented to illustrate the applications of the method.
This paper develops and analyzes a general iterative framework for solving parameter-dependent and random diffusion problems. It is inspired by the multi-modes method of [7,8] and the ensemble method of [19] and extends those methods into a more general and unified framework. The main idea of the framework is to reformulate the underlying problem into another problem with a parameter-independent diffusion coefficient and a parameter-dependent (and solution-dependent) right-hand side, a fixed-point iteration is then employed to compute the solution of the reformulated problem. The main benefit of the proposed approach is that an efficient direct solver and a block Krylov subspace iterative solver can be used at each iteration, allowing to reuse the $LU$ matrix factorization or to do an efficient matrix-matrix multiplication for all parameters, which in turn results in significant computation saving. Convergence and rates of convergence are established for the iterative method both at the variational continuous level and at the finite element discrete level under some structure conditions. Several strategies for establishing reformulations of parameter-dependent and random diffusion problems are proposed and their computational complexity is analyzed. Several 1-D and 2-D numerical experiments are also provided to demonstrate the efficiency of the proposed iterative method and to validate the theoretical convergence results.
Contact algorithm between different bodies plays an important role in solving collision problems. Usually it is not easy to be treated very well. Several ones for material point method were proposed by Bardenhangen, Brackbill, and Sulskycite{Bardenhagen2000,Bardenhagen2001}, Hu and Chencite{Hu_Chen2003}. An improved one for three-dimensional material point method is presented in this paper. The improved algorithm emphasizes the energy conservation of the system and faithfully recovers opposite acting forces between contacting bodies. Contrasted to the one by Bardenhagen, both the normal and tangential contacting forces are more appropriately applied to the contacting bodies via the contacting nodes of the background mesh; Contrasted to the one by Hu and Chen, not only the tangential velocities but also the normal ones are handled separately in respective individual mesh. This treatment ensures not only the contact/sliding/separation procedure but also the friction between contacting bodies are recovered. The presented contact algorithm is validated via numerical experiments including rolling simulation, impact of elastic spheres, impact of a Taylor bar and impact of plastic spheres. The numerical results show that the multi-mesh material point method with the improved contact algorithm is more suitable for solving collision problems.
In this paper, we focus on solving a class of constrained non-convex non-concave saddle point problems in a decentralized manner by a group of nodes in a network. Specifically, we assume that each node has access to a summand of a global objective function and nodes are allowed to exchange information only with their neighboring nodes. We propose a decentralized variant of the proximal point method for solving this problem. We show that when the objective function is $rho$-weakly convex-weakly concave the iterates converge to approximate stationarity with a rate of $mathcal{O}(1/sqrt{T})$ where the approximation error depends linearly on $sqrt{rho}$. We further show that when the objective function satisfies the Minty VI condition (which generalizes the convex-concave case) we obtain convergence to stationarity with a rate of $mathcal{O}(1/sqrt{T})$. To the best of our knowledge, our proposed method is the first decentralized algorithm with theoretical guarantees for solving a non-convex non-concave decentralized saddle point problem. Our numerical results for training a general adversarial network (GAN) in a decentralized manner match our theoretical guarantees.
In this paper I present several novel, efficient, algorithmic techniques for solving some multidimensional geometric data management and analysis problems. The techniques are based on several data structures from computational geometry (e.g. segment tree and range tree) and on the well-known sweep-line method.