Do you want to publish a course? Click here

Indecomposable decomposition of tensor products of modules over Drinfeld Doubles of Taft algebras

219   0   0.0 ( 0 )
 Added by Hui-Xiang Chen
 Publication date 2015
  fields
and research's language is English




Ask ChatGPT about the research

In this paper, we study the tensor structure of category of finite dimensional representations of Drinfeld quantum doubles $D(H_n(q))$ of Taft Hopf algebras $H_n(q)$. Tensor product decomposition rules for all finite dimensional indecomposable modules are explicitly given.



rate research

Read More

In this article, we investigate the representation ring (or Green ring) of the Drinfeld double $D(H_n(q))$ of the Taft algebra $H_n(q)$, where $n$ is an integer with $n>2$ and $q$ is a root of unity of order $n$. It is shown that the Green ring $r(D(H_n(q)))$ is a commutative ring generated by infinitely many elements subject to certain relations.
124 - Hua Sun , Hui-Xiang Chen 2018
In this paper, we investigate the tensor structure of the category of finite dimensional weight modules over the Hopf-Ore extensions $kG(chi^{-1}, a, 0)$ of group algebras $kG$. The tensor product decomposition rules for all indecomposable weight modules are explicitly given under the assumptions that $k$ is an algebraically closed field of characteristic zero, and the orders of $chi$ and $chi(a)$ are the same.
Let $(R^{vee},R)$ be a dual pair of Hopf algebras in the category of Yetter-Drinfeld modules over a Hopf algebra $H$ with bijective antipode. We show that there is a braided monoidal isomorphism between rational left Yetter-Drinfeld modules over the bosonizations of $R$ and of $R^{vee}$, respectively. As an application of this very general category isomorphism we obtain a natural proof of the existence of reflections of Nichols algebras of semisimple Yetter-Drinfeld modules over $H$. Key words: Hopf algebras, quantum groups, Weyl groupoid
Consider a Frobenius kernel G in a split semisimple algebraic group, in very good characteristic. We provide an analysis of support for the Drinfeld center Z(rep(G)) of the representation category for G, or equivalently for the representation category of the Drinfeld double of kG. We show that thick ideals in the corresponding stable category are classified by cohomological support, and calculate the Balmer spectrum of the stable category of Z(rep(G)). We also construct a $pi$-point style rank variety for the Drinfeld double, identify $pi$-point support with cohomological support, and show that both support theories satisfy the tensor product property. Our results hold, more generally, for Drinfeld doubles of Frobenius kernels in any smooth algebraic group which admits a quasi-logarithm, such as a Borel subgroup in a split semisimple group in very good characteristic.
For the Drinfeld double $D_n$ of the Taft algebra $A_n$ defined over an algebraically closed field $mathbb k$ of characteristic zero using a primitive $n$th root of unity $q in mathbb k$ for $n$ odd, $nge3$, we determine the ribbon element of $D_n$ explicitly. We use the R-matrix and ribbon element of $D_n$ to construct an action of the Temperley-Lieb algebra $mathsf{TL}_k(xi)$ with $xi = -(q^{frac{1}{2}}+q^{-frac{1}{2}})$ on the $k$-fold tensor product $V^{otimes k}$ of any two-dimensional simple $D_n$-module $V$. When $V$ is the unique self-dual two-dimensional simple module, we develop a diagrammatic algorithm for computing the $mathsf{TL}_k(xi)$-action. We show that this action on $V^{otimes k}$ is faithful for arbitrary $k ge 1$ and that $mathsf{TL}_k(xi)$ is isomorphic to the centralizer algebra $text{End}_{D_n}(V^{otimes k})$ for $1 le kle 2n-2$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا