No Arabic abstract
For the Drinfeld double $D_n$ of the Taft algebra $A_n$ defined over an algebraically closed field $mathbb k$ of characteristic zero using a primitive $n$th root of unity $q in mathbb k$ for $n$ odd, $nge3$, we determine the ribbon element of $D_n$ explicitly. We use the R-matrix and ribbon element of $D_n$ to construct an action of the Temperley-Lieb algebra $mathsf{TL}_k(xi)$ with $xi = -(q^{frac{1}{2}}+q^{-frac{1}{2}})$ on the $k$-fold tensor product $V^{otimes k}$ of any two-dimensional simple $D_n$-module $V$. When $V$ is the unique self-dual two-dimensional simple module, we develop a diagrammatic algorithm for computing the $mathsf{TL}_k(xi)$-action. We show that this action on $V^{otimes k}$ is faithful for arbitrary $k ge 1$ and that $mathsf{TL}_k(xi)$ is isomorphic to the centralizer algebra $text{End}_{D_n}(V^{otimes k})$ for $1 le kle 2n-2$.
In this article, we investigate the representation ring (or Green ring) of the Drinfeld double $D(H_n(q))$ of the Taft algebra $H_n(q)$, where $n$ is an integer with $n>2$ and $q$ is a root of unity of order $n$. It is shown that the Green ring $r(D(H_n(q)))$ is a commutative ring generated by infinitely many elements subject to certain relations.
In this paper, the tensor product of highest weight modules with intermediate series modules over the Neveu-Schwarz algebra is studied. The weight spaces of such tensor products are all infinitely dimensional if the highest weight module is nontrivial. We find that all such tensor products are indecomposable. We give the necessary and sufficient conditions for these tensor product modules to be irreducible by using shifting technique established for the Virasoro case in [13]. The necessary and sufficient conditions for any two such tensor products to be isomorphic are also determined.
In this paper, we study the tensor structure of category of finite dimensional representations of Drinfeld quantum doubles $D(H_n(q))$ of Taft Hopf algebras $H_n(q)$. Tensor product decomposition rules for all finite dimensional indecomposable modules are explicitly given.
2-local derivation is a generalized derivation for a Lie algebra, which plays an important role to the study of local properties of the structure of the Lie algebra. In this paper, we prove that every 2-local derivation on the conformal Galilei algebra is a derivation.
2-local derivation is a generalized derivation for a Lie algebra, which plays an important role to the study of local properties of the structure of the Lie algebra. In this paper, we prove that every 2-local derivation on the twisted Heisenberg-Virasoro algebra is a derivation.