Do you want to publish a course? Click here

High frequency nano-optomechanical disk resonators in liquids

119   0   0.0 ( 0 )
 Added by Eduardo Gil Santos
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

Vibrating nano- and micromechanical resonators have been the subject of research aiming at ultrasensitive mass sensors for mass spectrometry, chemical analysis and biomedical diagnosis. Unfortunately, their merits diminish dramatically in liquids due to dissipative mechanisms like viscosity and acoustic losses. A push towards faster and lighter miniaturized nanodevices would enable improved performances, provided dissipation was controlled and novel techniques were available to efficiently drive and read-out their minute displacement. Here we report on a nano-optomechanical approach to this problem using miniature semiconductor disks. These devices combine mechanical motion at high frequency above the GHz, ultra-low mass of a few picograms, and moderate dissipation in liquids. We show that high-sensitivity optical measurements allow to direct resolve their thermally driven Brownian vibrations, even in the most dissipative liquids. Thanks to this novel technique, we experimentally, numerically and analytically investigate the interaction of these resonators with arbitrary liquids. Nano-optomechanical disks emerge as probes of rheological information of unprecedented sensitivity and speed, opening applications in sensing and fundamental science.



rate research

Read More

Aluminum nitride (AlN) has been widely used in microeletromechanical resonators for its excellent electromechanical properties. Here we demonstrate the use of AlN as an optomechanical material that simultaneously offer low optical and mechanical loss. Integrated AlN microring resonators in the shape of suspended rings exhibit high optical quality factor (Q) with loaded Q up to 125,000. Optomechanical transduction of the Brownian motion of a GHz contour mode yields a displacement sensitivity of 6.2times10^(-18)m/Hz^(1/2) in ambient air.
Ponderomotive squeezing of the output light of an optical cavity has been recently observed in the MHz range in two different cavity optomechanical devices. Quadrature squeezing becomes particularly useful at lower spectral frequencies, for example in gravitational wave interferometers, despite being more sensitive to excess phase and frequency noise. Here we show a phase/frequency noise cancellation mechanism due to destructive interference which can facilitate the production of ponderomotive squeezing in the kHz range and we demonstrate it experimentally in an optomechanical system formed by a Fabry-P{e}rot cavity with a micro-mechanical mirror.
We report on optomechanical GaAs disk resonators with ultrahigh quality factor - frequency product Qf. Disks standing on a simple pedestal exhibit GHz breathing modes attaining a Qf of 10^13 measured under vacuum at cryogenic temperature. Clamping losses are found to be the dominant source of dissipation in this configuration. A new type of disk resonator integrating a shield within the pedestal is then proposed and its working principles and performances investigated by numerical simulations. For dimensions compatible with fabrication constraints, the clamping-loss-limited Q reaches 10^7-10^9 corresponding to Qf of 10^16-10^18. This shielded pedestal approach applies to any heterostructure presenting an acoustic mismatch.
250 - C. Doolin , P.H. Kim , B.D. Hauer 2013
High-frequency atomic force microscopy has enabled extraordinary new science through large bandwidth, high speed measurements of atomic and molecular structures. However, traditional optical detection schemes restrict the dimensions, and therefore the frequency, of the cantilever - ultimately setting a limit to the time resolution of experiments. Here we demonstrate optomechanical detection of low-mass, high-frequency nanomechanical cantilevers (up to 20 MHz) that surpass these limits, anticipating their use for single-molecule force measurements. These cantilevers achieve 2 fm / sqrt(Hz) displacement noise floors, and force sensitivity down to 132 aN / sqrt(Hz). Furthermore, the ability to resolve both in-plane and out-of-plane motion of our cantilevers opens the door for ultrasensitive multidimensional force spectroscopy, and optomechanical interactions, such as tuning of the cantilever frequency in situ, provide new opportunities in high-speed, high-resolution experiments.
We study the phonon dynamics in lattices of optomechanical resonators where the mutually coupled photonic modes are coherently driven and the mechanical resonators are uncoupled and connected to independent thermal baths. We present a general procedure to obtain the effective Lindblad dynamics of the phononic modes for an arbitrary lattice geometry, where the light modes play the role of an effective reservoir that mediates the phonon nonequilibrium dynamics. We show how to stabilize stationary states exhibiting directional heat currents over arbitrary distance, despite the absence of thermal gradient and of direct coupling between the mechanical resonators.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا