No Arabic abstract
In this work, the characterization of the full-power steady state of the TRIGA Mark II nuclear reactor of the University of Pavia is performed by coupling Monte Carlo (MC) simulation for neutronics with Multiphysics model for thermal-hydraulics. Neutronic analyses have been performed starting from a MC model of the entire reactor system, based on the MCNP5 code, that was already validated in fresh fuel and zero-power configuration (in which thermal effects are negligible) using the available experimental data as benchmark. In order to describe the full-power reactor configuration, the temperature distribution in the core is necessary. To evaluate it, a thermal-hydraulic model has been developed, using the power distribution results from MC simulation as input. The thermal-hydraulic model is focused on the core active region and takes into account sub-cooled boiling effects present at full reactor power. The obtained temperature distribution is then introduced in the MC model and a benchmark analysis is carried out to validate the model in fresh fuel and full-power configuration. The good agreement between experimental data and simulation results concerning full-power reactor criticality, proves the reliability of the adopted methodology of analysis, both from neutronics and thermal-hydraulics perspective.
A time evolution model was developed to study fuel burnup for the TRIGA Mark II reactor at the University of Pavia. The results were used to predict the effects of a complete core reconfiguration and the accuracy of this prediction was tested experimentally. We used the Monte Carlo code MCNP5 to reproduce system neutronics in different operating conditions and to analyse neutron fluxes in the reactor core. The software that took care of time evolution, completely designed in-house, used the neutron fluxes obtained by MCNP5 to evaluate fuel consumption. This software was developed specifically to keep into account some features that differentiate experimental reactors from power ones, such as the daily ON/OFF cycle and the long fuel lifetime. These effects can not be neglected to properly account for neutron poison accumulation. We evaluated the effect of 48 years of reactor operation and predicted a possible new configuration for the reactor core: the objective was to remove some of the fuel elements from the core and to obtain a substantial increase in the Core Excess reactivity value. The evaluation of fuel burnup and the reconfiguration results are presented in this paper.
We present a new model, developed with the Serpent Monte Carlo code, for neutronics simulation of the TRIGA Mark II reactor of Pavia (Italy). The complete 3D geometry of the reactor core is implemented with high accuracy and detail, exploiting all the available information about geometry and materials. The Serpent model of the reactor is validated in the fresh fuel configuration, through a benchmark analysis of the first criticality experiments and control rods calibrations. The accuracy of simulations in reproducing the reactivity difference between the low power (10 W) and full power (250 kW) reactor condition is also tested. Finally, a direct comparison between Serpent and MCNP simulations of the same reactor configurations is presented.
The performance of the solid deuterium ultra-cold neutron source at the pulsed reactor TRIGA Mainz with a maximum peak energy of 10 MJ is described. The solid deuterium converter with a volume of V=160 cm3 (8 mol), which is exposed to a thermal neutron fluence of 4.5x10^13 n/cm2, delivers up to 550 000 UCN per pulse outside of the biological shield at the experimental area. UCN densities of ~ 10/cm3 are obtained in stainless steel bottles of V ~ 10 L resulting in a storage efficiency of ~20%. The measured UCN yields compare well with the predictions from a Monte Carlo simulation developed to model the source and to optimize its performance for the upcoming upgrade of the TRIGA Mainz into a user facility for UCN physics.
This paper presents the results of neutron flux measurements at two irradiation facilities of the TRIGA Mark II reactor at ENEA Casaccia Research Center, Italy. The goal of these measurements is to provide a complete characterization of neutron irradiation facilities for accurate and precise dose evaluation in radiation damage tests and, more generally, for all applications that need a good knowledge of neutron flux in terms of intensity, energy spectrum and spatial distribution. The neutron activation technique is used to measure the activation rates of several reactions, chosen so to cover the whole energy range of neutron flux spectrum. A multi-group neutron flux measurement is obtained through an unfolding algorithm based on a Bayesian statistical model. The obtained results prove that this experimental method allows to measure the total neutron flux within 2% statistical uncertainty, and to get at the same time a good description of its energy spectrum and spatial distribution.
The SoLid collaboration has developed a new detector technology to detect electron anti-neutrinos at close proximity to the Belgian BR2 reactor at surface level. A 288$,$kg prototype detector was deployed in 2015 and collected data during the operational period of the reactor and during reactor shut-down. Dedicated calibration campaigns were also performed with gamma and neutron sources. This paper describes the construction of the prototype detector with a high control on its proton content and the stability of its operation over a period of several months after deployment at the BR2 reactor site. All detector cells provide sufficient light yields to achieve a target energy resolution of better than 20%/$sqrt{E(MeV)}$. The capability of the detector to track muons is exploited to equalize the light response of a large number of channels to a precision of 3% and to demonstrate the stability of the energy scale over time. Particle identification based on pulse-shape discrimination is demonstrated with calibration sources. Despite a lower neutron detection efficiency due to triggering constraints, the main backgrounds at the reactor site were determined and taken into account in the shielding strategy for the main experiment. The results obtained with this prototype proved essential in the design optimization of the final detector. This paper is dedicated to our SCK$cdot$CEN colleague, Edgar Koonen, who passed away unexpectedly in 2017. Edgar was part of the SoLid collaboration since its inception and his efforts were vital to get the experiment started. He will be duly missed.