Do you want to publish a course? Click here

Fuel burnup analysis of the TRIGA Mark II Reactor at the University of Pavia

91   0   0.0 ( 0 )
 Added by Davide Chiesa
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

A time evolution model was developed to study fuel burnup for the TRIGA Mark II reactor at the University of Pavia. The results were used to predict the effects of a complete core reconfiguration and the accuracy of this prediction was tested experimentally. We used the Monte Carlo code MCNP5 to reproduce system neutronics in different operating conditions and to analyse neutron fluxes in the reactor core. The software that took care of time evolution, completely designed in-house, used the neutron fluxes obtained by MCNP5 to evaluate fuel consumption. This software was developed specifically to keep into account some features that differentiate experimental reactors from power ones, such as the daily ON/OFF cycle and the long fuel lifetime. These effects can not be neglected to properly account for neutron poison accumulation. We evaluated the effect of 48 years of reactor operation and predicted a possible new configuration for the reactor core: the objective was to remove some of the fuel elements from the core and to obtain a substantial increase in the Core Excess reactivity value. The evaluation of fuel burnup and the reconfiguration results are presented in this paper.



rate research

Read More

In this work, the characterization of the full-power steady state of the TRIGA Mark II nuclear reactor of the University of Pavia is performed by coupling Monte Carlo (MC) simulation for neutronics with Multiphysics model for thermal-hydraulics. Neutronic analyses have been performed starting from a MC model of the entire reactor system, based on the MCNP5 code, that was already validated in fresh fuel and zero-power configuration (in which thermal effects are negligible) using the available experimental data as benchmark. In order to describe the full-power reactor configuration, the temperature distribution in the core is necessary. To evaluate it, a thermal-hydraulic model has been developed, using the power distribution results from MC simulation as input. The thermal-hydraulic model is focused on the core active region and takes into account sub-cooled boiling effects present at full reactor power. The obtained temperature distribution is then introduced in the MC model and a benchmark analysis is carried out to validate the model in fresh fuel and full-power configuration. The good agreement between experimental data and simulation results concerning full-power reactor criticality, proves the reliability of the adopted methodology of analysis, both from neutronics and thermal-hydraulics perspective.
We present a new model, developed with the Serpent Monte Carlo code, for neutronics simulation of the TRIGA Mark II reactor of Pavia (Italy). The complete 3D geometry of the reactor core is implemented with high accuracy and detail, exploiting all the available information about geometry and materials. The Serpent model of the reactor is validated in the fresh fuel configuration, through a benchmark analysis of the first criticality experiments and control rods calibrations. The accuracy of simulations in reproducing the reactivity difference between the low power (10 W) and full power (250 kW) reactor condition is also tested. Finally, a direct comparison between Serpent and MCNP simulations of the same reactor configurations is presented.
We investigate the recent Daya Bay results on the changes in the antineutrino flux and spectrum with the burnup of the reactor fuel. We find that the discrepancy between current model predictions and the Daya Bay results can be traced to the original measured $^{235}$U/$^{239}$Pu ratio of the fission beta spectra that were used as a base for the expected antineutrino fluxes. An analysis of the antineutrino spectra that is based on a summation over all fission fragment beta-decays, using nuclear database input, explains all of the features seen in the Daya Bay evolution data. However, this summation method still predicts an anomaly. Thus, we conclude that there is currently not enough information to use the antineutrino flux changes to rule out the possible existence of sterile neutrinos.
139 - J. Karch , Yu. Sobolev , M. Beck 2013
The performance of the solid deuterium ultra-cold neutron source at the pulsed reactor TRIGA Mainz with a maximum peak energy of 10 MJ is described. The solid deuterium converter with a volume of V=160 cm3 (8 mol), which is exposed to a thermal neutron fluence of 4.5x10^13 n/cm2, delivers up to 550 000 UCN per pulse outside of the biological shield at the experimental area. UCN densities of ~ 10/cm3 are obtained in stainless steel bottles of V ~ 10 L resulting in a storage efficiency of ~20%. The measured UCN yields compare well with the predictions from a Monte Carlo simulation developed to model the source and to optimize its performance for the upcoming upgrade of the TRIGA Mainz into a user facility for UCN physics.
The upgrade of the cold neutron triple-axis spectrometer FLEXX is described. We discuss the characterisation of the gains from the new primary spectrometer, including a larger guide and double focussing monochromator, and present measurements of the energy and momentum resolution and of the neutron flux of the instrument. We found an order of magnitude gain in intensity (at the cost of coarser momentum resolution), and that the incoherent elastic energy widths are measurably narrower than before the upgrade. The much improved count rate should allow the use of smaller single crystals samples and thus enable the upgraded FLEXX spectrometer to continue making leading edge measurements.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا