Do you want to publish a course? Click here

Solvable non-Markovian dynamic network

144   0   0.0 ( 0 )
 Added by Nicos Georgiou
 Publication date 2015
  fields
and research's language is English




Ask ChatGPT about the research

Non-Markovian processes are widespread in natural and human-made systems, yet explicit model- ling and analysis of such systems is underdeveloped. We consider a non-Markovian dynamic network with random link activation and deletion (RLAD) and heavy tailed Mittag-Leffler distribution for the inter-event times. We derive an analytically and computationally tractable system of Kolmogorov- like forward equations utilising the Caputo derivative for the probability of having a given number of active links in the network and solve them. Simulations for the RLAD are also studied for power-law inter-event times and we show excellent agreement with the Mittag-Leffler model. This agreement holds even when the RLAD network dynamics is coupled with the susceptible-infected-susceptible (SIS) spreading dynamics. Thus, the analytically solvable Mittag-Leffler model provides an excel- lent approximation to the case when the network dynamics is characterised by power-law distributed inter-event times. We further discuss possible generalizations of our result.



rate research

Read More

We analyze random networks that change over time. First we analyze a dynamic Erdos-Renyi model, whose edges change over time. We describe its stationary distribution, its convergence thereto, and the SI contact process on the network, which has relevance for connectivity and the spread of infections. Second, we analyze the effect of node turnover, when nodes enter and leave the network, which has relevance for network models incorporating births, deaths, aging, and other demographic factors.
72 - Bertrand Cloez 2018
In this work, we study a family of non-Markovian trees modeling populations where individuals live and reproduce independently with possibly time-dependent birth-rate and lifetime distribution. To this end, we use the coding process introduced by Lambert. We show that, in our situation, this process is no longer a L{e}vy process but remains a Feller process and we give a complete characterization of its generator. This allows us to study the model through well-known Markov processes techniques. On one hand, introducing a scale function for such processes allows us to get necessary and sufficient conditions for extinction or non-extinction and to characterize the law of such trees conditioned on these events. On the other hand, using Lyapounov drift techniques , we get another set of, easily checkable, sufficient criteria for extinction or non-extinction and some tail estimates for the tree length. Finally, we also study scaling limits of such random trees and observe that the Bessel tree appears naturally.
We introduce a new model for rill erosion. We start with a network similar to that in the Discrete Web and instantiate a dynamics which makes the process highly non-Markovian. The behavior of nodes in the streams is similar to the behavior of Polya urns with time-dependent input. In this paper we use a combination of rigorous arguments and simulation results to show that the model exhibits many properties of rill erosion; in particular, nodes which are deeper in the network tend to switch less quickly.
We study non-Markovian stochastic epidemic models (SIS, SIR, SIRS, and SEIR), in which the infectious (and latent/exposing, immune) periods have a general distribution. We provide a representation of the evolution dynamics using the time epochs of infection (and latency/exposure, immunity). Taking the limit as the size of the population tends to infinity, we prove both a functional law of large number (FLLN) and a functional central limit theorem (FCLT) for the processes of interest in these models. In the FLLN, the limits are a unique solution to a system of deterministic Volterra integral equations, while in the FCLT, the limit processes are multidimensional Gaussian solutions of linear Volterra stochastic integral equations. In the proof of the FCLT, we provide an important Poisson random measures representation of the diffusion-scaled processes converging to Gaussian components driving the limit process.
We derive asymptotic properties for a stochastic dynamic network model in a stochastic dynamic population. In the model, nodes give birth to new nodes until they die, each node being equipped with a social index given at birth. During the life of a node it creates edges to other nodes, nodes with high social index at higher rate, and edges disappear randomly in time. For this model we derive criterion for when a giant connected component exists after the process has evolved for a long period of time, assuming the node population grows to infinity. We also obtain an explicit expression for the degree correlation $rho$ (of neighbouring nodes) which shows that $rho$ is always positive irrespective of parameter values in one of the two treated submodels, and may be either positive or negative in the other model, depending on the parameters.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا