Do you want to publish a course? Click here

A non-Markovian model of rill erosion

123   0   0.0 ( 0 )
 Added by Michael Damron
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

We introduce a new model for rill erosion. We start with a network similar to that in the Discrete Web and instantiate a dynamics which makes the process highly non-Markovian. The behavior of nodes in the streams is similar to the behavior of Polya urns with time-dependent input. In this paper we use a combination of rigorous arguments and simulation results to show that the model exhibits many properties of rill erosion; in particular, nodes which are deeper in the network tend to switch less quickly.



rate research

Read More

We discuss various situations where the formation of rocky coast morphology can be attributed to the retro-action of the coast morphology itself on the erosive power of the sea. Destroying the weaker elements of the coast, erosion can creates irregular seashores. In turn, the geometrical irregularity participates in the damping of sea-waves, decreasing their erosive power. There may then exist a mutual self-stabilization of the wave amplitude together with the irregular morphology of the coast. A simple model of this type of stabilization is discussed. The resulting coastline morphologies are diverse, depending mainly on the morphology/damping coupling. In the limit case of weak coupling, the process spontaneously builds fractal morphologies with a dimension close to 4/3. This provides a direct connection between the coastal erosion problem and the theory of percolation. For strong coupling, rugged but non-fractal coasts may emerge during the erosion process, and we investigate a geometrical characterization in these cases. The model is minimal, but can be extended to take into account heterogeneity in the rock lithology and various initial conditions. This allows to mimic coastline complexity, well beyond simple fractality. Our results suggest that the irregular morphology of coastlines as well as the stochastic nature of erosion are deeply connected with the critical aspects of percolation phenomena.
134 - M. Hairer 2009
We study a fairly general class of time-homogeneous stochastic evolutions driven by noises that are not white in time. As a consequence, the resulting processes do not have the Markov property. In this setting, we obtain constructive criteria for the uniqueness of stationary solutions that are very close in spirit to the existing criteria for Markov processes. In the case of discrete time, where the driving noise consists of a stationary sequence of Gaussian random variables, we give optimal conditions on the spectral measure for our criteria to be applicable. In particular, we show that under a certain assumption on the spectral density, our assumptions can be checked in virtually the same way as one would check that the Markov process obtained by replacing the driving sequence by a sequence of independent identically distributed Gaussian random variables is strong Feller and topologically irreducible. The results of the present article are based on those obtained previously in the continuous time context of diffusions driven by fractional Brownian motion.
Non-Markovian dynamics pervades human activity and social networks and it induces memory effects and burstiness in a wide range of processes including inter-event time distributions, duration of interactions in temporal networks and human mobility. Here we propose a non-Markovian Majority-Vote model (NMMV) that introduces non-Markovian effects in the standard (Markovian) Majority-Vote model (SMV). The SMV model is one of the simplest two-state stochastic models for studying opinion dynamics, and displays a continuous order-disorder phase transition at a critical noise. In the NMMV model we assume that the probability that an agent changes state is not only dependent on the majority state of his neighbors but it also depends on his {em age}, i.e. how long the agent has been in his current state. The NMMV model has two regimes: the aging regime implies that the probability that an agent changes state is decreasing with his age, while in the anti-aging regime the probability that an agent changes state is increasing with his age. Interestingly, we find that the critical noise at which we observe the order-disorder phase transition is a non-monotonic function of the rate $beta$ of the aging (anti-aging) process. In particular the critical noise in the aging regime displays a maximum as a function of $beta$ while in the anti-aging regime displays a minimum. This implies that the aging/anti-aging dynamics can retard/anticipate the transition and that there is an optimal rate $beta$ for maximally perturbing the value of the critical noise. The analytical results obtained in the framework of the heterogeneous mean-field approach are validated by extensive numerical simulations on a large variety of network topologies.
Non-Markovian processes are widespread in natural and human-made systems, yet explicit model- ling and analysis of such systems is underdeveloped. We consider a non-Markovian dynamic network with random link activation and deletion (RLAD) and heavy tailed Mittag-Leffler distribution for the inter-event times. We derive an analytically and computationally tractable system of Kolmogorov- like forward equations utilising the Caputo derivative for the probability of having a given number of active links in the network and solve them. Simulations for the RLAD are also studied for power-law inter-event times and we show excellent agreement with the Mittag-Leffler model. This agreement holds even when the RLAD network dynamics is coupled with the susceptible-infected-susceptible (SIS) spreading dynamics. Thus, the analytically solvable Mittag-Leffler model provides an excel- lent approximation to the case when the network dynamics is characterised by power-law distributed inter-event times. We further discuss possible generalizations of our result.
72 - Bertrand Cloez 2018
In this work, we study a family of non-Markovian trees modeling populations where individuals live and reproduce independently with possibly time-dependent birth-rate and lifetime distribution. To this end, we use the coding process introduced by Lambert. We show that, in our situation, this process is no longer a L{e}vy process but remains a Feller process and we give a complete characterization of its generator. This allows us to study the model through well-known Markov processes techniques. On one hand, introducing a scale function for such processes allows us to get necessary and sufficient conditions for extinction or non-extinction and to characterize the law of such trees conditioned on these events. On the other hand, using Lyapounov drift techniques , we get another set of, easily checkable, sufficient criteria for extinction or non-extinction and some tail estimates for the tree length. Finally, we also study scaling limits of such random trees and observe that the Bessel tree appears naturally.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا