No Arabic abstract
We study non-Markovian stochastic epidemic models (SIS, SIR, SIRS, and SEIR), in which the infectious (and latent/exposing, immune) periods have a general distribution. We provide a representation of the evolution dynamics using the time epochs of infection (and latency/exposure, immunity). Taking the limit as the size of the population tends to infinity, we prove both a functional law of large number (FLLN) and a functional central limit theorem (FCLT) for the processes of interest in these models. In the FLLN, the limits are a unique solution to a system of deterministic Volterra integral equations, while in the FCLT, the limit processes are multidimensional Gaussian solutions of linear Volterra stochastic integral equations. In the proof of the FCLT, we provide an important Poisson random measures representation of the diffusion-scaled processes converging to Gaussian components driving the limit process.
We obtain Central Limit Theorems in Functional form for a class of time-inhomogeneous interacting random walks on the simplex of probability measures over a finite set. Due to a reinforcement mechanism, the increments of the walks are correlated, forcing their convergence to the same, possibly random, limit. Random walks of this form have been introduced in the context of urn models and in stochastic approximation. We also propose an application to opinion dynamics in a random network evolving via preferential attachment. We study, in particular, random walks interacting through a mean-field rule and compare the rate they converge to their limit with the rate of synchronization, i.e. the rate at which their mutual distances converge to zero. Under certain conditions, synchronization is faster than convergence.
The fractional non-homogeneous Poisson process was introduced by a time-change of the non-homogeneous Poisson process with the inverse $alpha$-stable subordinator. We propose a similar definition for the (non-homogeneous) fractional compound Poisson process. We give both finite-dimensional and functional limit theorems for the fractional non-homogeneous Poisson process and the fractional compound Poisson process. The results are derived by using martingale methods, regular variation properties and Anscombes theorem. Eventually, some of the limit results are verified in a Monte Carlo simulation.
We define a multi-group version of the mean-field or Curie-Weiss spin model. For this model, we show how, analogously to the classical (single-group) model, the three temperature regimes are defined. Then we use the method of moments to determine for each regime how the vector of the group magnetisations behaves asymptotically. Some possible applications to social or political sciences are discussed.
In this paper we consider some non linear Hawkes processes with signed reproduction function (or memory kernel) thus exhibiting both self-excitation and inhibition. We provide a Law of Large Numbers, a Central Limit Theorem and large deviation results, as time growths to infinity. The proofs lie on a renewal structure for these processes introduced in Costa et al. (2020) which leads to a comparison with cumulative processes. Explicit computations are made on some examples. Similar results have been obtained in the literature for self-exciting Hawkes processes only.
We derive herein the limiting laws for certain stationary distributions of birth-and-death processes related to the classical model of chemical adsorption-desorption reactions due to Langmuir. The model has been recently considered in the context of a hybridization reaction on an oligonucleotide DNA microarray. Our results imply that the truncated gamma- and beta- type distributions can be used as approximations to the observed distributions of the fluorescence readings of the oligo-probes on a microarray. These findings might be useful in developing new model-based, probe-specific methods of extracting target concentrations from array fluorescence readings.