No Arabic abstract
We combine HST/WFC3 imaging and G141 grism observations from the CANDELS and 3D-HST surveys to produce a catalog of grism spectroscopic redshifts for galaxies in the CANDELS/GOODS-South field. The WFC3/G141 grism spectra cover a wavelength range of 1.1<lambda<1.7 microns with a resolving power of R~130 for point sources, thus providing rest-frame optical spectra for galaxies out to z~3.5. The catalog is selected in the H-band (F160W) and includes both galaxies with and without previously published spectroscopic redshifts. Grism spectra are extracted for all H-band detected galaxies with H<24 and a CANDELS photometric redshift z_phot > 0.6. The resulting spectra are visually inspected to identify emission lines and redshifts are determined using cross-correlation with empirical spectral templates. To establish the accuracy of our redshifts, we compare our results against high-quality spectroscopic redshifts from the literature. Using a sample of 411 control galaxies, this analysis yields a precision of sigma_NMAD=0.0028 for the grism-derived redshifts, which is consistent with the accuracy reported by the 3D-HST team. Our final catalog covers an area of 153 square arcmin and contains 1019 redshifts for galaxies in GOODS-S. Roughly 60% (608/1019) of these redshifts are for galaxies with no previously published spectroscopic redshift. These new redshifts span a range of 0.677 < z < 3.456 and have a median redshift of z=1.282. The catalog contains a total of 234 new redshifts for galaxies at z>1.5. In addition, we present 20 galaxy pair candidates identified for the first time using the grism redshifts in our catalog, including four new galaxy pairs at z~2, nearly doubling the number of such pairs previously identified.
We combine new high sensitivity ultraviolet (UV) imaging from the Wide Field Camera 3 (WFC3) on the Hubble Space Telescope (HST) with existing deep HST/Advanced Camera for Surveys (ACS) optical images from the Great Observatories Origins Deep Survey (GOODS) program to identify UV-dropouts, which are Lyman break galaxy (LBG) candidates at z~1-3. These new HST/WFC3 observations were taken over 50 sq.arcmin in the GOODS-South field as a part of the Early Release Science program. The uniqueness of these new UV data is that they are observed in 3 UV/optical (WFC3 UVIS) channel filters (F225W, F275W and F336W), which allows us to identify three different sets of UV-dropout samples. We apply Lyman break dropout selection criteria to identify F225W-, F275W- and F336W-dropouts, which are z~1.7, 2.1 and 2.7 LBG candidates, respectively. Our results are as follows: (1) these WFC3 UVIS filters are very reliable in selecting LBGs with z~2.0, which helps to reduce the gap between the well studied z~>3 and z~0 regimes, (2) the combined number counts agrees very well with the observed change in the surface densities as a function of redshift when compared with the higher redshift LBG samples; and (3) the best-fit Schechter function parameters from the rest-frame UV luminosity functions at three different redshifts fit very well with the evolutionary trend of the characteristic absolute magnitude, and the faint-end slope, as a function of redshift. This is the first study to illustrate the usefulness of the WFC3 UVIS channel observations to select z<3 LBGs. The addition of the new WFC3 on the HST has made it possible to uniformly select LBGs from z~1 to z~9, and significantly enhance our understanding of these galaxies using HST sensitivity and resolution.
We present a high quality multiwavelength (from 0.3 to 8.0 micron) catalog of the large and deep area in the GOODS Southern Field covered by the deep near-IR observations obtained with the ESO VLT. The catalog is entirely based on public data: in our analysis, we have included the F435W, F606W, F775W and F850LP ACS images, the JHKs VLT data, the Spitzer data provided by IRAC instrument (3.6, 4.5, 5.8 and 8.0 micron), and publicly available U-band data from the 2.2ESO and VLT-VIMOS. We describe in detail the procedures adopted to obtain this multiwavelength catalog. In particular, we developed a specific software for the accurate PSF-matching of space and ground-based images of different resolution and depth (ConvPhot), of which we analyse performances and limitations. We have included both z-selected, as well as Ks-selected objects, yielding a unique, self-consistent catalog. The largest fraction of the sample is 90% complete at z~26 or Ks~23.8 (AB scale). Finally, we cross-correlated our data with all the spectroscopic catalogs available to date, assigning a spectroscopic redshift to more than 1000 sources. The final catalog is made up of 14847 objects, at least 72 of which are known stars, 68 are AGNs, and 928 galaxies with spectroscopic redshift (668 galaxies with reliable redshift determination). We applied our photometric redshift code to this data set, and the comparison with the spectroscopic sample shows that the quality of the resulting photometric redshifts is excellent, with an average scatter of only 0.06. The full catalog, which we named GOODS-MUSIC (MUltiwavelength Southern Infrared Catalog), including the spectroscopic information, is made publicly available, together with the software specifically designed to this end.
We present results of a search for emission-line galaxies in the Southern Fields of the Hubble Space Telescope PEARS (Probing Evolution And Reionization Spectroscopically) grism survey. The PEARS South Fields consist of five ACS pointings (including the Hubble Ultra Deep Field) with the G800L grism for a total of 120 orbits, revealing thousands of faint object spectra in the GOODS-South region of the sky. Emission-line galaxies (ELGs) are one subset of objects that are prevalent among the grism spectra. Using a 2-dimensional detection and extraction procedure, we find 320 emission lines orginating from 226 galaxy knots within 192 individual galaxies. Line identification results in 118 new grism-spectroscopic redshifts for galaxies in the GOODS-South Field. We measure emission line fluxes using standard Gaussian fitting techniques. At the resolution of the grism data, the H-beta and [OIII] doublet are blended. However, by fitting two Gaussian components to the H-beta and [OIII] features, we find that many of the PEARS ELGs have high [OIII]/H-beta ratios compared to other galaxy samples of comparable luminosities. The star-formation rates (SFRs) of the ELGs are presented, as well as a sample of distinct giant star-forming regions at z~0.1-0.5 across individual galaxies. We find that the radial distances of these HII regions in general reside near the galaxies optical continuum half-light radii, similar to those of giant HII regions in local galaxies.
We present basic properties of $sim$3,300 emission line galaxies detected by the FastSound survey, which are mostly H$alpha$ emitters at $z sim$ 1.2-1.5 in the total area of about 20 deg$^2$, with the H$alpha$ flux sensitivity limit of $sim 1.6 times 10^{-16} rm erg cm^{-2} s^{-1}$ at 4.5 sigma. This paper presents the catalogs of the FastSound emission lines and galaxies, which will be open to the public in the near future. We also present basic properties of typical FastSound H$alpha$ emitters, which have H$alpha$ luminosities of $10^{41.8}$-$10^{43.3}$ erg/s, SFRs of 20--500 $M_odot$/yr, and stellar masses of $10^{10.0}$--$10^{11.3}$ $M_odot$. The 3D distribution maps for the four fields of CFHTLS W1--4 are presented, clearly showing large scale clustering of galaxies at the scale of $sim$ 100--600 comoving Mpc. Based on 1,105 galaxies with detections of multiple emission lines, we estimate that contamination of non-H$alpha$ lines is about 4% in the single-line emission galaxies, which are mostly [OIII]$lambda$5007. This contamination fraction is also confirmed by the stacked spectrum of all the FastSound spectra, in which H$alpha$, [NII]$lambda lambda$6548,6583, [SII]$lambda lambda$6717, 6731, and [OI]$lambda lambda$6300,6364 are seen.
This manuscript describes the public release of the Hubble Legacy Fields (HLF) project photometric catalog for the extended GOODS-South region from the Hubble Space Telescope (HST) archival program AR-13252. The analysis is based on the version 2.0 HLF data release that now includes all ultraviolet (UV) imaging, combining three major UV surveys. The HLF data combines over a decade worth of 7475 exposures taken in 2635 orbits totaling 6.3 Msec with the HST Advanced Camera for Surveys Wide Field Channel (ACS/WFC) and the Wide Field Camera 3 (WFC3) UVIS/IR Channels in the greater GOODS-S extragalactic field, covering all major observational efforts (e.g., GOODS, GEMS, CANDELS, ERS, UVUDF and many other programs; see Illingworth et al 2019, in prep). The HLF GOODS-S catalogs include photometry in 13 bandpasses from the UV (WFC3/UVIS F225W, F275W and F336W filters), optical (ACS/WFC F435W, F606W, F775W, F814W and F850LP filters), to near-infrared (WFC3/IR F098M, F105W, F125W, F140W and F160W filters). Such a data set makes it possible to construct the spectral energy distributions (SEDs) of objects over a wide wavelength range from high resolution mosaics that are largely contiguous. Here, we describe a photometric analysis of 186,474 objects in the HST imaging at wavelengths 0.2--1.6$mu$m. We detect objects from an ultra-deep image combining the PSF-homogenized and noise-equalized F850LP, F125W, F140W and F160W images, including Gaia astrometric corrections. SEDs were determined by carefully taking the effects of the point-spread function in each observation into account. All of the data presented herein are available through the HLF website (https://archive.stsci.edu/prepds/hlf/).