Do you want to publish a course? Click here

The GOODS-MUSIC sample: a multicolour catalog of near-IR selected galaxies in the GOODS-South field

54   0   0.0 ( 0 )
 Added by Andrea Grazian
 Publication date 2006
  fields Physics
and research's language is English
 Authors A. Grazian




Ask ChatGPT about the research

We present a high quality multiwavelength (from 0.3 to 8.0 micron) catalog of the large and deep area in the GOODS Southern Field covered by the deep near-IR observations obtained with the ESO VLT. The catalog is entirely based on public data: in our analysis, we have included the F435W, F606W, F775W and F850LP ACS images, the JHKs VLT data, the Spitzer data provided by IRAC instrument (3.6, 4.5, 5.8 and 8.0 micron), and publicly available U-band data from the 2.2ESO and VLT-VIMOS. We describe in detail the procedures adopted to obtain this multiwavelength catalog. In particular, we developed a specific software for the accurate PSF-matching of space and ground-based images of different resolution and depth (ConvPhot), of which we analyse performances and limitations. We have included both z-selected, as well as Ks-selected objects, yielding a unique, self-consistent catalog. The largest fraction of the sample is 90% complete at z~26 or Ks~23.8 (AB scale). Finally, we cross-correlated our data with all the spectroscopic catalogs available to date, assigning a spectroscopic redshift to more than 1000 sources. The final catalog is made up of 14847 objects, at least 72 of which are known stars, 68 are AGNs, and 928 galaxies with spectroscopic redshift (668 galaxies with reliable redshift determination). We applied our photometric redshift code to this data set, and the comparison with the spectroscopic sample shows that the quality of the resulting photometric redshifts is excellent, with an average scatter of only 0.06. The full catalog, which we named GOODS-MUSIC (MUltiwavelength Southern Infrared Catalog), including the spectroscopic information, is made publicly available, together with the software specifically designed to this end.



rate research

Read More

We combine HST/WFC3 imaging and G141 grism observations from the CANDELS and 3D-HST surveys to produce a catalog of grism spectroscopic redshifts for galaxies in the CANDELS/GOODS-South field. The WFC3/G141 grism spectra cover a wavelength range of 1.1<lambda<1.7 microns with a resolving power of R~130 for point sources, thus providing rest-frame optical spectra for galaxies out to z~3.5. The catalog is selected in the H-band (F160W) and includes both galaxies with and without previously published spectroscopic redshifts. Grism spectra are extracted for all H-band detected galaxies with H<24 and a CANDELS photometric redshift z_phot > 0.6. The resulting spectra are visually inspected to identify emission lines and redshifts are determined using cross-correlation with empirical spectral templates. To establish the accuracy of our redshifts, we compare our results against high-quality spectroscopic redshifts from the literature. Using a sample of 411 control galaxies, this analysis yields a precision of sigma_NMAD=0.0028 for the grism-derived redshifts, which is consistent with the accuracy reported by the 3D-HST team. Our final catalog covers an area of 153 square arcmin and contains 1019 redshifts for galaxies in GOODS-S. Roughly 60% (608/1019) of these redshifts are for galaxies with no previously published spectroscopic redshift. These new redshifts span a range of 0.677 < z < 3.456 and have a median redshift of z=1.282. The catalog contains a total of 234 new redshifts for galaxies at z>1.5. In addition, we present 20 galaxy pair candidates identified for the first time using the grism redshifts in our catalog, including four new galaxy pairs at z~2, nearly doubling the number of such pairs previously identified.
We have exploited the HST CANDELS WFC3/IR imaging to study the properties of (sub-)mm galaxies in GOODS-South. After using the deep radio and Spitzer imaging to identify galaxy counterparts for the (sub-)mm sources, we have used the new CANDELS data in two ways. First, we have derived improved photometric redshifts and stellar masses, confirming that the (sub-)mm galaxies are massive (<M*>=2.2x10^11 M_solar) galaxies at z=1-3. Second, we have exploited the depth and resolution of the WFC3/IR imaging to determine the sizes and morphologies of the galaxies at rest-frame optical wavelengths, fitting two-dimensional axi-symmetric Sersic models. Crucially, the WFC3/IR H-band imaging enables modelling of the mass-dominant galaxy, rather than the blue high-surface brightness features which often dominate optical (rest-frame UV) images of (sub-)mm galaxies, and can confuse visual morphological classification. As a result of this analysis we find that >95% of the rest-frame optical light in almost all of the (sub-)mm galaxies is well-described by either a single exponential disk, or a multiple-component system in which the dominant constituent is disk-like. We demonstrate that this conclusion is consistent with the results of high-quality ground-based K-band imaging, and explain why. The massive disk galaxies which host luminous (sub-)mm emission are reasonably extended (r_e=4 kpc), consistent with the sizes of other massive star-forming disks at z~2. In many cases we find evidence of blue clumps within the sources, with the mass-dominant disk becoming more significant at longer wavelengths. Finally, only a minority of the sources show evidence for a major galaxy-galaxy interaction. Taken together, these results support the view that most (sub-)mm galaxies at z~2 are simply the most extreme examples of normal star-forming galaxies at that era.
We investigate the use of optical variability to identify and study Active Galactic Nuclei (AGN) in the GOODS-South field. A sample of 22 mid-infrared power law sources and 102 X-ray sources with optical counterparts in the HST ACS images were selected. Each object is classified with a variability significance value related to the standard deviation of its magnitude in five epochs separated by 45-day intervals. The variability significance is compared to the optical, mid-IR, and X-ray properties of the sources. We find that 26% of all AGN candidates (either X-ray- or mid-IR-selected) are optical variables. The fraction of optical variables increases to 51% when considering sources with soft X-ray band ratios. For the mid-IR AGN candidates which have multiwavelength SEDs, we find optical variability for 64% of those classified with SEDs like Broad Line AGNs. While mostly unobscured AGN appear to have the most significant optical variability, some of the more obscured AGNs are also observed as variables. In particular, we find two mid-IR power law-selected AGN candidates without X-ray emission that display optical variability, confirming their AGN nature.
188 - J.S.Dunlop , P.A.R.Ade , J.J.Bock 2009
We identify and investigate the nature of the 20 brightest 250-micron sources detected by the BLAST within the central 150 sq. arcmin of the GOODS-South field. Aided by the available deep VLA radio imaging, reaching S_1.4 = 30 micro-Jy, we have identified radio counterparts for 17/20 of the 250-micron sources. The resulting enhanced positional accuracy of ~1 arcsec has then allowed us to exploit the deep multi-frequency imaging of GOODS-South to establish secure galaxy counterparts for the 17 radio-identified sources, and plausible galaxy candidates for the 3 radio-unidentified sources. Confusion is a serious issue for this deep BLAST 250-micron survey, due to the large size of the beam. Nevertheless, we argue that our chosen counterparts are significant, and often dominant contributors to the measured BLAST flux densities. For all of these 20 galaxies we have been able to determine spectroscopic (8) or photometric (12) redshifts. The result is the first `complete redshift distribution for a deep 250-micron selected galaxy sample. This reveals that 250-micron surveys reaching detection limits of ~30 mJy contain not only low-redshift spirals/LIRGs, but also the extreme z~2 dust-enshrouded starburst galaxies previously discovered at sub-millimetre wavelengths. Based on their IRAC colours, we find that virtually all of the BLAST galaxy identifications appear better described as analogues of the M82 starburst galaxy, or Sc star-forming discs rather than highly obscured ULIRGs. Inspection of the LABOCA 870-micron imaging of the GOODS-South field yields detections of 7/11 of the z>1 BLAST sources, and reveals 250/870 flux-density ratios consistent with a standard 40K modified black-body fit with a dust emissivity index beta=1.5.
This manuscript describes the public release of the Hubble Legacy Fields (HLF) project photometric catalog for the extended GOODS-South region from the Hubble Space Telescope (HST) archival program AR-13252. The analysis is based on the version 2.0 HLF data release that now includes all ultraviolet (UV) imaging, combining three major UV surveys. The HLF data combines over a decade worth of 7475 exposures taken in 2635 orbits totaling 6.3 Msec with the HST Advanced Camera for Surveys Wide Field Channel (ACS/WFC) and the Wide Field Camera 3 (WFC3) UVIS/IR Channels in the greater GOODS-S extragalactic field, covering all major observational efforts (e.g., GOODS, GEMS, CANDELS, ERS, UVUDF and many other programs; see Illingworth et al 2019, in prep). The HLF GOODS-S catalogs include photometry in 13 bandpasses from the UV (WFC3/UVIS F225W, F275W and F336W filters), optical (ACS/WFC F435W, F606W, F775W, F814W and F850LP filters), to near-infrared (WFC3/IR F098M, F105W, F125W, F140W and F160W filters). Such a data set makes it possible to construct the spectral energy distributions (SEDs) of objects over a wide wavelength range from high resolution mosaics that are largely contiguous. Here, we describe a photometric analysis of 186,474 objects in the HST imaging at wavelengths 0.2--1.6$mu$m. We detect objects from an ultra-deep image combining the PSF-homogenized and noise-equalized F850LP, F125W, F140W and F160W images, including Gaia astrometric corrections. SEDs were determined by carefully taking the effects of the point-spread function in each observation into account. All of the data presented herein are available through the HLF website (https://archive.stsci.edu/prepds/hlf/).
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا