Do you want to publish a course? Click here

On Capacity of Active Relaying in Magnetic Induction based Wireless Underground Sensor Networks

334   0   0.0 ( 0 )
 Added by Steven Kisseleff
 Publication date 2015
and research's language is English




Ask ChatGPT about the research

Wireless underground sensor networks (WUSNs) present a variety of new research challenges. Magnetic induction (MI) based transmission has been proposed to overcome the very harsh propagation conditions in underground communications in recent years. In this approach, induction coils are utilized as antennas in the sensor nodes. This solution achieves longer transmission ranges compared to the traditional electromagnetic (EM) waves based approach. Furthermore, a passive relaying technique has been proposed in the literature where additional resonant circuits are deployed between the nodes. However, this solution is shown to provide only a limited performance improvement under practical system design contraints. In this work, the potential of an active relay device is investigated which may improve the performance of the system by combining the benefits of the traditional wireless relaying and the MI based signal transmission.



rate research

Read More

Relay networks having $n$ source-to-destination pairs and $m$ half-duplex relays, all operating in the same frequency band in the presence of block fading, are analyzed. This setup has attracted significant attention and several relaying protocols have been reported in the literature. However, most of the proposed solutions require either centrally coordinated scheduling or detailed channel state information (CSI) at the transmitter side. Here, an opportunistic relaying scheme is proposed, which alleviates these limitations. The scheme entails a two-hop communication protocol, in which sources communicate with destinations only through half-duplex relays. The key idea is to schedule at each hop only a subset of nodes that can benefit from emph{multiuser diversity}. To select the source and destination nodes for each hop, it requires only CSI at receivers (relays for the first hop, and destination nodes for the second hop) and an integer-value CSI feedback to the transmitters. For the case when $n$ is large and $m$ is fixed, it is shown that the proposed scheme achieves a system throughput of $m/2$ bits/s/Hz. In contrast, the information-theoretic upper bound of $(m/2)log log n$ bits/s/Hz is achievable only with more demanding CSI assumptions and cooperation between the relays. Furthermore, it is shown that, under the condition that the product of block duration and system bandwidth scales faster than $log n$, the achievable throughput of the proposed scheme scales as $Theta ({log n})$. Notably, this is proven to be the optimal throughput scaling even if centralized scheduling is allowed, thus proving the optimality of the proposed scheme in the scaling law sense.
136 - S. Kisseleff , I.F. Akyildiz , 2015
Magnetic induction (MI) based communication and power transfer systems have gained an increased attention in the recent years. Typical applications for these systems lie in the area of wireless charging, near-field communication, and wireless sensor networks. For an optimal system performance, the power efficiency needs to be maximized. Typically, this optimization refers to the impedance matching and tracking of the split-frequencies. However, an important role of magnitude and phase of the input signal has been mostly overlooked. Especially for the wireless power transfer systems with multiple transmitter coils, the optimization of the transmit signals can dramatically improve the power efficiency. In this work, we propose an iterative algorithm for the optimization of the transmit signals for a transmitter with three orthogonal coils and multiple single coil receivers. The proposed scheme significantly outperforms the traditional baseline algorithms in terms of power efficiency.
This paper analyzes the impact and benefits of infrastructure support in improving the throughput scaling in networks of $n$ randomly located wireless nodes. The infrastructure uses multi-antenna base stations (BSs), in which the number of BSs and the number of antennas at each BS can scale at arbitrary rates relative to $n$. Under the model, capacity scaling laws are analyzed for both dense and extended networks. Two BS-based routing schemes are first introduced in this study: an infrastructure-supported single-hop (ISH) routing protocol with multiple-access uplink and broadcast downlink and an infrastructure-supported multi-hop (IMH) routing protocol. Then, their achievable throughput scalings are analyzed. These schemes are compared against two conventional schemes without BSs: the multi-hop (MH) transmission and hierarchical cooperation (HC) schemes. It is shown that a linear throughput scaling is achieved in dense networks, as in the case without help of BSs. In contrast, the proposed BS-based routing schemes can, under realistic network conditions, improve the throughput scaling significantly in extended networks. The gain comes from the following advantages of these BS-based protocols. First, more nodes can transmit simultaneously in the proposed scheme than in the MH scheme if the number of BSs and the number of antennas are large enough. Second, by improving the long-distance signal-to-noise ratio (SNR), the received signal power can be larger than that of the HC, enabling a better throughput scaling under extended networks. Furthermore, by deriving the corresponding information-theoretic cut-set upper bounds, it is shown under extended networks that a combination of four schemes IMH, ISH, MH, and HC is order-optimal in all operating regimes.
This paper surveys and unifies a number of recent contributions that have collectively developed a metric for decentralized wireless network analysis known as transmission capacity. Although it is notoriously difficult to derive general end-to-end capacity results for multi-terminal or adhoc networks, the transmission capacity (TC) framework allows for quantification of achievable single-hop rates by focusing on a simplified physical/MAC-layer model. By using stochastic geometry to quantify the multi-user interference in the network, the relationship between the optimal spatial density and success probability of transmissions in the network can be determined, and expressed -- often fairly simply -- in terms of the key network parameters. The basic model and analytical tools are first discussed and applied to a simple network with path loss only and we present tight upper and lower bounds on transmission capacity (via lower and upper bounds on outage probability). We then introduce random channels (fading/shadowing) and give TC and outage approximations for an arbitrary channel distribution, as well as exact results for the special cases of Rayleigh and Nakagami fading. We then apply these results to show how TC can be used to better understand scheduling, power control, and the deployment of multiple antennas in a decentralized network. The paper closes by discussing shortcomings in the model as well as future research directions.
Recent results establish the optimality of interference alignment to approach the Shannon capacity of interference networks at high SNR. However, the extent to which interference can be aligned over a finite number of signalling dimensions remains unknown. Another important concern for interference alignment schemes is the requirement of global channel knowledge. In this work we provide examples of iterative algorithms that utilize the reciprocity of wireless networks to achieve interference alignment with only local channel knowledge at each node. These algorithms also provide numerical insights into the feasibility of interference alignment that are not yet available in theory.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا