Do you want to publish a course? Click here

Improved Capacity Scaling in Wireless Networks With Infrastructure

167   0   0.0 ( 0 )
 Added by Won-Yong Shin
 Publication date 2010
and research's language is English




Ask ChatGPT about the research

This paper analyzes the impact and benefits of infrastructure support in improving the throughput scaling in networks of $n$ randomly located wireless nodes. The infrastructure uses multi-antenna base stations (BSs), in which the number of BSs and the number of antennas at each BS can scale at arbitrary rates relative to $n$. Under the model, capacity scaling laws are analyzed for both dense and extended networks. Two BS-based routing schemes are first introduced in this study: an infrastructure-supported single-hop (ISH) routing protocol with multiple-access uplink and broadcast downlink and an infrastructure-supported multi-hop (IMH) routing protocol. Then, their achievable throughput scalings are analyzed. These schemes are compared against two conventional schemes without BSs: the multi-hop (MH) transmission and hierarchical cooperation (HC) schemes. It is shown that a linear throughput scaling is achieved in dense networks, as in the case without help of BSs. In contrast, the proposed BS-based routing schemes can, under realistic network conditions, improve the throughput scaling significantly in extended networks. The gain comes from the following advantages of these BS-based protocols. First, more nodes can transmit simultaneously in the proposed scheme than in the MH scheme if the number of BSs and the number of antennas are large enough. Second, by improving the long-distance signal-to-noise ratio (SNR), the received signal power can be larger than that of the HC, enabling a better throughput scaling under extended networks. Furthermore, by deriving the corresponding information-theoretic cut-set upper bounds, it is shown under extended networks that a combination of four schemes IMH, ISH, MH, and HC is order-optimal in all operating regimes.



rate research

Read More

We address the optimization of the sum rate performance in multicell interference-limited singlehop networks where access points are allowed to cooperate in terms of joint resource allocation. The resource allocation policies considered here combine power control and user scheduling. Although very promising from a conceptual point of view, the optimization of the sum of per-link rates hinges, in principle, on tough issues such as computational complexity and the requirement for heavy receiver-to-transmitter channel information feedback across all network cells. In this paper, we show that, in fact, distributed algorithms are actually obtainable in the asymptotic regime where the numbers of users per cell is allowed to grow large. Additionally, using extreme value theory, we provide scaling laws for upper and lower bounds for the network capacity (sum of single user rates over all cells), corresponding to zero-interference and worst-case interference scenarios. We show that the scaling is either dominated by path loss statistics or by small-scale fading, depending on the regime and user location scenario. We show that upper and lower rate bounds behave in fact identically, asymptotically. This remarkable result suggests not only that distributed resource allocation is practically possible but also that the impact of multicell interference on the capacity (in terms of scaling) actually vanishes asymptotically.
This work studies the throughput scaling laws of ad hoc wireless networks in the limit of a large number of nodes. A random connections model is assumed in which the channel connections between the nodes are drawn independently from a common distribution. Transmitting nodes are subject to an on-off strategy, and receiving nodes employ conventional single-user decoding. The following results are proven: 1) For a class of connection models with finite mean and variance, the throughput scaling is upper-bounded by $O(n^{1/3})$ for single-hop schemes, and $O(n^{1/2})$ for two-hop (and multihop) schemes. 2) The $Theta (n^{1/2})$ throughput scaling is achievable for a specific connection model by a two-hop opportunistic relaying scheme, which employs full, but only local channel state information (CSI) at the receivers, and partial CSI at the transmitters. 3) By relaxing the constraints of finite mean and variance of the connection model, linear throughput scaling $Theta (n)$ is achievable with Pareto-type fading models.
This paper surveys and unifies a number of recent contributions that have collectively developed a metric for decentralized wireless network analysis known as transmission capacity. Although it is notoriously difficult to derive general end-to-end capacity results for multi-terminal or adhoc networks, the transmission capacity (TC) framework allows for quantification of achievable single-hop rates by focusing on a simplified physical/MAC-layer model. By using stochastic geometry to quantify the multi-user interference in the network, the relationship between the optimal spatial density and success probability of transmissions in the network can be determined, and expressed -- often fairly simply -- in terms of the key network parameters. The basic model and analytical tools are first discussed and applied to a simple network with path loss only and we present tight upper and lower bounds on transmission capacity (via lower and upper bounds on outage probability). We then introduce random channels (fading/shadowing) and give TC and outage approximations for an arbitrary channel distribution, as well as exact results for the special cases of Rayleigh and Nakagami fading. We then apply these results to show how TC can be used to better understand scheduling, power control, and the deployment of multiple antennas in a decentralized network. The paper closes by discussing shortcomings in the model as well as future research directions.
Recent results establish the optimality of interference alignment to approach the Shannon capacity of interference networks at high SNR. However, the extent to which interference can be aligned over a finite number of signalling dimensions remains unknown. Another important concern for interference alignment schemes is the requirement of global channel knowledge. In this work we provide examples of iterative algorithms that utilize the reciprocity of wireless networks to achieve interference alignment with only local channel knowledge at each node. These algorithms also provide numerical insights into the feasibility of interference alignment that are not yet available in theory.
Wireless underground sensor networks (WUSNs) present a variety of new research challenges. Magnetic induction (MI) based transmission has been proposed to overcome the very harsh propagation conditions in underground communications in recent years. In this approach, induction coils are utilized as antennas in the sensor nodes. This solution achieves longer transmission ranges compared to the traditional electromagnetic (EM) waves based approach. Furthermore, a passive relaying technique has been proposed in the literature where additional resonant circuits are deployed between the nodes. However, this solution is shown to provide only a limited performance improvement under practical system design contraints. In this work, the potential of an active relay device is investigated which may improve the performance of the system by combining the benefits of the traditional wireless relaying and the MI based signal transmission.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا