Do you want to publish a course? Click here

Opportunistic Relaying in Wireless Networks

539   0   0.0 ( 0 )
 Added by Shengshan Cui
 Publication date 2009
and research's language is English




Ask ChatGPT about the research

Relay networks having $n$ source-to-destination pairs and $m$ half-duplex relays, all operating in the same frequency band in the presence of block fading, are analyzed. This setup has attracted significant attention and several relaying protocols have been reported in the literature. However, most of the proposed solutions require either centrally coordinated scheduling or detailed channel state information (CSI) at the transmitter side. Here, an opportunistic relaying scheme is proposed, which alleviates these limitations. The scheme entails a two-hop communication protocol, in which sources communicate with destinations only through half-duplex relays. The key idea is to schedule at each hop only a subset of nodes that can benefit from emph{multiuser diversity}. To select the source and destination nodes for each hop, it requires only CSI at receivers (relays for the first hop, and destination nodes for the second hop) and an integer-value CSI feedback to the transmitters. For the case when $n$ is large and $m$ is fixed, it is shown that the proposed scheme achieves a system throughput of $m/2$ bits/s/Hz. In contrast, the information-theoretic upper bound of $(m/2)log log n$ bits/s/Hz is achievable only with more demanding CSI assumptions and cooperation between the relays. Furthermore, it is shown that, under the condition that the product of block duration and system bandwidth scales faster than $log n$, the achievable throughput of the proposed scheme scales as $Theta ({log n})$. Notably, this is proven to be the optimal throughput scaling even if centralized scheduling is allowed, thus proving the optimality of the proposed scheme in the scaling law sense.



rate research

Read More

Wireless underground sensor networks (WUSNs) present a variety of new research challenges. Magnetic induction (MI) based transmission has been proposed to overcome the very harsh propagation conditions in underground communications in recent years. In this approach, induction coils are utilized as antennas in the sensor nodes. This solution achieves longer transmission ranges compared to the traditional electromagnetic (EM) waves based approach. Furthermore, a passive relaying technique has been proposed in the literature where additional resonant circuits are deployed between the nodes. However, this solution is shown to provide only a limited performance improvement under practical system design contraints. In this work, the potential of an active relay device is investigated which may improve the performance of the system by combining the benefits of the traditional wireless relaying and the MI based signal transmission.
A network consisting of $n$ source-destination pairs and $m$ relays is considered. Focusing on the large system limit (large $n$), the throughput scaling laws of two-hop relaying protocols are studied for Rayleigh fading channels. It is shown that, under the practical constraints of single-user encoding-decoding scheme, and partial channel state information (CSI) at the transmitters (via integer-value feedback from the receivers), the maximal throughput scales as $log n$ even if full relay cooperation is allowed. Furthermore, a novel decentralized opportunistic relaying scheme with receiver CSI, partial transmitter CSI, and no relay cooperation, is shown to achieve the optimal throughput scaling law of $log n$.
We study a cooperative network with a buffer-aided multi-antenna source, multiple half-duplex (HD) buffer-aided relays and a single destination. Such a setup could represent a cellular downlink scenario, in which the source can be a more powerful wireless device with a buffer and multiple antennas, while a set of intermediate less powerful devices are used as relays to reach the destination. The main target is to recover the multiplexing loss of the network by having the source and a relay to simultaneously transmit their information to another relay and the destination, respectively. Successive transmissions in such a cooperative network, however, cause inter-relay interference (IRI). First, by assuming global channel state information (CSI), we show that the detrimental effect of IRI can be alleviated by precoding at the source, mitigating or even fully cancelling the interference. A cooperative relaying policy is proposed that employs a joint precoding design and relay-pair selection. Note that both fixed rate and adaptive rate transmissions can be considered. For the case when channel state information is only available at the receiver side (CSIR), we propose a relay selection policy that employs a phase alignment technique to reduce the IRI. The performance of the two proposed relay pair selection policies are evaluated and compared with other state-of-the-art relaying schemes in terms of outage and throughput. The results show that the use of a powerful source can provide considerable performance improvements.
We consider the opportunistic multiuser diversity in the multiuser two-way amplify-and-forward (AF) relay channel. The relay, equipped with multiple antennas and a simple zero-forcing beam-forming scheme, selects a set of two way relaying user pairs to enhance the degree of freedom (DoF) and consequently the sum throughput of the system. The proposed channel aligned pair scheduling (CAPS) algorithm reduces the inter-pair interference and keeps the signal to interference plus noise power ratio (SINR) of user pairs relatively interference free in average sense when the number of user pairs become very large. For ideal situations, where the number of user pairs grows faster than the system signal to noise ratio (SNR), the DoF of $M$ per channel use can be achieved when $M$ is the relay antenna size. With a limited number of pairs, the system is overloaded and the sum rates saturate at high signal to noise ratio (SNR) though modifications of CAPS can improve the performance to a certain amount. The performance of CAPS can be further enhanced by semi-orthogonal channel aligned pair scheduling (SCAPS) algorithm, which not only aligns the pair channels but also forms semi-orthogonal inter-pair channels. Simulation results show that we provide a set of approaches based on (S)CAPS and modified (S)CAPS, which provides system performance benefit depending on the SNR and the number of user pairs in the network.
We consider a full-duplex decode-and-forward system, where the wirelessly powered relay employs the time-switching protocol to receive power from the source and then transmit information to the destination. It is assumed that the relay node is equipped with two sets of antennas to enable full-duplex communications. Three different interference mitigation schemes are studied, namely, 1) optimal 2) zero-forcing and 3) maximum ratio combining/maximum ratio transmission. We develop new outage probability expressions to investigate delay-constrained transmission throughput of these schemes. Our analysis show interesting performance comparisons of the considered precoding schemes for different system and link parameters.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا