Do you want to publish a course? Click here

Spontaneous Motion on Two-dimensional Continuous Attractors

199   0   0.0 ( 0 )
 Added by C.C. Alan Fung
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

Attractor models are simplified models used to describe the dynamics of firing rate profiles of a pool of neurons. The firing rate profile, or the neuronal activity, is thought to carry information. Continuous attractor neural networks (CANNs) describe the neural processing of continuous information such as object position, object orientation and direction of object motion. Recently, it was found that, in one-dimensional CANNs, short-term synaptic depression can destabilize bump-shaped neuronal attractor activity profiles. In this paper, we study two-dimensional CANNs with short-term synaptic depression and with spike frequency adaptation. We found that the dynamics of CANNs with short-term synaptic depression and CANNs with spike frequency adaptation are qualitatively similar. We also found that in both kinds of CANNs the perturbative approach can be used to predict phase diagrams, dynamical variables and speed of spontaneous motion.



rate research

Read More

We investigate the dynamics of continuous attractor neural networks (CANNs). Due to the translational invariance of their neuronal interactions, CANNs can hold a continuous family of stationary states. We systematically explore how their neutral stability facilitates the tracking performance of a CANN, which is believed to have wide applications in brain functions. We develop a perturbative approach that utilizes the dominant movement of the network stationary states in the state space. We quantify the distortions of the bump shape during tracking, and study their effects on the tracking performance. Results are obtained on the maximum speed for a moving stimulus to be trackable, and the reaction time to catch up an abrupt change in stimulus.
We introduce an analytically solvable model of two-dimensional continuous attractor neural networks (CANNs). The synaptic input and the neuronal response form Gaussian bumps in the absence of external stimuli, and enable the network to track external stimuli by its translational displacement in the two-dimensional space. Basis functions of the two-dimensional quantum harmonic oscillator in polar coordinates are introduced to describe the distortion modes of the Gaussian bump. The perturbative method is applied to analyze its dynamics. Testing the method by considering the network behavior when the external stimulus abruptly changes its position, we obtain results of the reaction time and the amplitudes of various distortion modes, with excellent agreement with simulation results.
106 - I.I. Yusipov , T.V. Laptyeva , 2017
In a closed single-particle quantum system, spatial disorder induces Anderson localization of eigenstates and halts wave propagation. The phenomenon is vulnerable to interaction with environment and decoherence, that is believed to restore normal diffusion. We demonstrate that for a class of experimentally feasible non-Hermitian dissipators, which admit signatures of localization in asymptotic states, quantum particle opts between diffusive and ballistic regimes, depending on the phase parameter of dissipators, with sticking about localization centers. In diffusive regime, statistics of quantum jumps is non-Poissonian and has a power-law interval, a footprint of intermittent locking in Anderson modes. Ballistic propagation reflects dispersion of an ordered lattice and introduces a new timescale for jumps with non-monotonous probability distribution. Hermitian dephasing dissipation makes localization features vanish, and Poissonian jump statistics along with normal diffusion are recovered.
160 - P. Buonsante 2007
In the present paper we describe the properties induced by disorder on an ultracold gas of Bosonic atoms loaded into a two-dimensional optical lattice with global confinement ensured by a parabolic potential. Our analysis is centered on the spatial distribution of the various phases, focusing particularly on the superfluid properties of the system as a function of external parameters and disorder amplitude. In particular, it is shown how disorder can suppress superfluidity, while partially preserving the system coherence.
Despite their apparent simplicity, random Boolean networks display a rich variety of dynamical behaviors. Much work has been focused on the properties and abundance of attractors. The topologies of random Boolean networks with one input per node can be seen as graphs of random maps. We introduce an approach to investigating random maps and finding analytical results for attractors in random Boolean networks with the corresponding topology. Approximating some other non-chaotic networks to be of this class, we apply the analytic results to them. For this approximation, we observe a strikingly good agreement on the numbers of attractors of various lengths. We also investigate observables related to the average number of attractors in relation to the typical number of attractors. Here, we find strong differences that highlight the difficulties in making direct comparisons between random Boolean networks and real systems. Furthermore, we demonstrate the power of our approach by deriving some results for random maps. These results include the distribution of the number of components in random maps, along with asymptotic expansions for cumulants up to the 4th order.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا