No Arabic abstract
Despite their apparent simplicity, random Boolean networks display a rich variety of dynamical behaviors. Much work has been focused on the properties and abundance of attractors. The topologies of random Boolean networks with one input per node can be seen as graphs of random maps. We introduce an approach to investigating random maps and finding analytical results for attractors in random Boolean networks with the corresponding topology. Approximating some other non-chaotic networks to be of this class, we apply the analytic results to them. For this approximation, we observe a strikingly good agreement on the numbers of attractors of various lengths. We also investigate observables related to the average number of attractors in relation to the typical number of attractors. Here, we find strong differences that highlight the difficulties in making direct comparisons between random Boolean networks and real systems. Furthermore, we demonstrate the power of our approach by deriving some results for random maps. These results include the distribution of the number of components in random maps, along with asymptotic expansions for cumulants up to the 4th order.
Typical properties of computing circuits composed of noisy logical gates are studied using the statistical physics methodology. A growth model that gives rise to typical random Boolean functions is mapped onto a layered Ising spin system, which facilitates the study of their ability to represent arbitrary formulae with a given level of error, the tolerable level of gate-noise, and its dependence on the formulae depth and complexity, the gates used and properties of the function inputs. Bounds on their performance, derived in the information theory literature via specific gates, are straightforwardly retrieved, generalized and identified as the corresponding typical-case phase transitions. The framework is employed for deriving results on error-rates, function-depth and sensitivity, and their dependence on the gate-type and noise model used that are difficult to obtain via the traditional methods used in this field.
Characterizing the in uence of network properties on the global emerging behavior of interacting elements constitutes a central question in many areas, from physical to social sciences. In this article we study a primary model of disordered neuronal networks with excitatory-inhibitory structure and balance constraints. We show how the interplay between structure and disorder in the connectivity leads to a universal transition from trivial to synchronized stationary or periodic states. This transition cannot be explained only through the analysis of the spectral density of the connectivity matrix. We provide a low dimensional approximation that shows the role of both the structure and disorder in the dynamics.
We systematically study and compare damage spreading at the sparse percolation (SP) limit for random boolean and threshold networks with perturbations that are independent of the network size $N$. This limit is relevant to information and damage propagation in many technological and natural networks. Using finite size scaling, we identify a new characteristic connectivity $K_s$, at which the average number of damaged nodes $bar d$, after a large number of dynamical updates, is independent of $N$. Based on marginal damage spreading, we determine the critical connectivity $K_c^{sparse}(N)$ for finite $N$ at the SP limit and show that it systematically deviates from $K_c$, established by the annealed approximation, even for large system sizes. Our findings can potentially explain the results recently obtained for gene regulatory networks and have important implications for the evolution of dynamical networks that solve specific computational or functional tasks.
We study the stable attractors of a class of continuous dynamical systems that may be idealized as networks of Boolean elements, with the goal of determining which Boolean attractors, if any, are good approximations of the attractors of generic continuous systems. We investigate the dynamics in simple rings and rings with one additional self-input. An analysis of switching characteristics and pulse propagation explains the relation between attractors of the continuous systems and their Boolean approximations. For simple rings, reliable Boolean attractors correspond to stable continuous attractors. For networks with more complex logic, the qualitative features of continuous attractors are influenced by inherently non-Boolean characteristics of switching events.
We review results on the scaling of the optimal path length in random networks with weighted links or nodes. In strong disorder we find that the length of the optimal path increases dramatically compared to the known small world result for the minimum distance. For ErdH{o}s-Renyi (ER) and scale free networks (SF), with parameter $lambda$ ($lambda >3$), we find that the small-world nature is destroyed. We also find numerically that for weak disorder the length of the optimal path scales logaritmically with the size of the networks studied. We also review the transition between the strong and weak disorder regimes in the scaling properties of the length of the optimal path for ER and SF networks and for a general distribution of weights, and suggest that for any distribution of weigths, the distribution of optimal path lengths has a universal form which is controlled by the scaling parameter $Z=ell_{infty}/A$ where $A$ plays the role of the disorder strength, and $ell_{infty}$ is the length of the optimal path in strong disorder. The relation for $A$ is derived analytically and supported by numerical simulations. We then study the minimum spanning tree (MST) and show that it is composed of percolation clusters, which we regard as super-nodes, connected by a scale-free tree. We furthermore show that the MST can be partitioned into two distinct components. One component the {it superhighways}, for which the nodes with high centrality dominate, corresponds to the largest cluster at the percolation threshold which is a subset of the MST. In the other component, {it roads}, low centrality nodes dominate. We demonstrate the significance identifying the superhighways by showing that one can improve significantly the global transport by improving a very small fraction of the network.