Do you want to publish a course? Click here

Mean-field description of ultracold Bosons on disordered two-dimensional optical lattices

150   0   0.0 ( 0 )
 Added by Francesco Massel
 Publication date 2007
  fields Physics
and research's language is English
 Authors P. Buonsante




Ask ChatGPT about the research

In the present paper we describe the properties induced by disorder on an ultracold gas of Bosonic atoms loaded into a two-dimensional optical lattice with global confinement ensured by a parabolic potential. Our analysis is centered on the spatial distribution of the various phases, focusing particularly on the superfluid properties of the system as a function of external parameters and disorder amplitude. In particular, it is shown how disorder can suppress superfluidity, while partially preserving the system coherence.



rate research

Read More

We show that in the regime when strong disorder is more relevant than field quantization the superfluid--to--Bose-glass criticality of one-dimensional bosons is preceded by the prolonged logarithmically slow classical-field renormalization flow of the superfluid stiffness at mesoscopic scales. With the system compressibility remaining constant, the quantum nature of the system manifests itself only in the renormalization of dilute weak links. On the insulating side, the flow ultimately reaches a value of the Luttinger parameter at which the instanton--anti-instanton pairs start to proliferate, in accordance with the universal quantum scenario. This happens first at astronomic system sizes because of the suppressed instanton fugacity. We illustrate our result by first-principles simulations.
Quantum phases of ultracold bosons with repulsive interactions in lattices in the presence of quenched disorder are investigated. The disorder is assumed to be caused by the interaction of the bosons with impurity atoms having a large effective mass. The system is described by the Bose-Hubbard Hamiltonian with random on-site energies which have a discrete binary probability distribution. The phase diagram at zero temperature is calculated using several methods like a strong-coupling expansion, an exact numerical diagonalization, and a Bose-Fermi mapping valid in the hard-core limit. It is shown that the Mott-insulator phase exists for any strength of disorder in contrast to the case of continuous probability distribution. We find that the compressibility of the Bose glass phase varies in a wide range and can be extremely low. Furthermore, we evaluate experimentally accessible quantities like the momentum distribution, the static and dynamic structure factors, and the density of excited states. The influence of finite temperature is discussed as well.
We report on results of Quantum Monte Carlo simulations for bosons in a two dimensional quasi-periodic optical lattice. We study the ground state phase diagram at unity filling and confirm the existence of three phases: superfluid, Mott insulator, and Bose glass. At lower interaction strength, we find that sizable disorder strength is needed in order to destroy superfluidity in favor of the Bose glass. On the other hand, at large enough interaction superfluidity is completely destroyed in favor of the Mott insulator (at lower disorder strength) or the Bose glass (at larger disorder strength). At intermediate interactions, the system undergoes an insulator to superfluid transition upon increasing the disorder, while a further increase of disorder strength drives the superfluid to Bose glass phase transition. While we are not able to discern between the Mott insulator and the Bose glass at intermediate interactions, we study the transition between these two phases at larger interaction strength and, unlike what reported in arXiv:1110.3213v3 for random disorder, find no evidence of a Mott-glass-like behavior.
We reveal the generic characteristics of wave packet delocalization in two-dimensional nonlinear disordered lattices by performing extensive numerical simulations in two basic disordered models: the Klein-Gordon system and the discrete nonlinear Schr{o}dinger equation. We find that in both models (a) the wave packets second moment asymptotically evolves as $t^{a_m}$ with $a_m approx 1/5$ ($1/3$) for the weak (strong) chaos dynamical regime, in agreement with previous theoretical predictions [S.~Flach, Chem.~Phys.~{bf 375}, 548 (2010)], (b) chaos persists, but its strength decreases in time $t$ since the finite time maximum Lyapunov exponent $Lambda$ decays as $Lambda propto t^{alpha_{Lambda}}$, with $alpha_{Lambda} approx -0.37$ ($-0.46$) for the weak (strong) chaos case, and (c) the deviation vector distributions show the wandering of localized chaotic seeds in the lattices excited part, which induces the wave packets thermalization. We also propose a dimension-independent scaling between the wave packets spreading and chaoticity, which allows the prediction of the obtained $alpha_{Lambda}$ values.
We propose the weak localization of magnons in a disordered two-dimensional antiferromagnet. We derive the longitudinal thermal conductivity $kappa_{xx}$ for magnons of a disordered Heisenberg antiferromagnet in the linear-response theory with the linear-spin-wave approximation. We show that the back scattering of magnons is enhanced critically by the particle-particle-type multiple impurity scattering. This back scattering causes a logarithmic suppression of $kappa_{xx}$ with the length scale in two dimensions. We also argue a possible effect of inelastic scattering on the temperature dependence of $kappa_{xx}$. This weak localization is useful to control turning the magnon thermal current on and off.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا