Do you want to publish a course? Click here

On Kalman-Like Finite Impulse Response Filters

125   0   0.0 ( 0 )
 Added by Lubin Chang
 Publication date 2015
and research's language is English
 Authors Lubin Chang




Ask ChatGPT about the research

This note reveals an explicit relationship between two representative finite impulse response (FIR) filters, i.e. the newly derived and popularized Kalman-Like unbiased FIR filter (UFIR) and the receding horizon Kalman FIR filter (RHKF). It is pointed out that the only difference of the two algorithms lies in the noise statistics ignorance and appropriate initial condition construction strategy in UFIR. The revelation can benefit the performance improvement of one by drawing lessons from the other. Some interesting conclusions have also been drawn and discussed from this revelation.



rate research

Read More

In this paper, we study linear filters to process signals defined on simplicial complexes, i.e., signals defined on nodes, edges, triangles, etc. of a simplicial complex, thereby generalizing filtering operations for graph signals. We propose a finite impulse response filter based on the Hodge Laplacian, and demonstrate how this filter can be designed to amplify or attenuate certain spectral components of simplicial signals. Specifically, we discuss how, unlike in the case of node signals, the Fourier transform in the context of edge signals can be understood in terms of two orthogonal subspaces corresponding to the gradient-flow signals and curl-flow signals arising from the Hodge decomposition. By assigning different filter coefficients to the associated terms of the Hodge Laplacian, we develop a subspace-varying filter which enables more nuanced control over these signal types. Numerical experiments are conducted to show the potential of simplicial filters for sub-component extraction, denoising and model approximation.
Kalman Filters are one of the most influential models of time-varying phenomena. They admit an intuitive probabilistic interpretation, have a simple functional form, and enjoy widespread adoption in a variety of disciplines. Motivated by recent variational methods for learning deep generative models, we introduce a unified algorithm to efficiently learn a broad spectrum of Kalman filters. Of particular interest is the use of temporal generative models for counterfactual inference. We investigate the efficacy of such models for counterfactual inference, and to that end we introduce the Healing MNIST dataset where long-term structure, noise and actions are applied to sequences of digits. We show the efficacy of our method for modeling this dataset. We further show how our model can be used for counterfactual inference for patients, based on electronic health record data of 8,000 patients over 4.5 years.
Various methods have been proposed for the nonlinear filtering problem, including the extended Kalman filter (EKF), iterated extended Kalman filter (IEKF), unscented Kalman filter (UKF) and iterated unscented Kalman filter (IUKF). In this paper two new nonlinear Kalman filters are proposed and investigated, namely the observation-centered extended Kalman filter (OCEKF) and observation-centered unscented Kalman filter (OCUKF). Although the UKF and EKF are common default choices for nonlinear filtering, there are situations where they are bad choices. Examples are given where the EKF and UKF perform very poorly, and the IEKF and OCEKF perform well. In addition the IUKF and OCUKF are generally similar to the IEKF and OCEKF, and also perform well, though care is needed in the choice of tuning parameters when the observation error is small. The reasons for this behaviour are explored in detail.
Kalman filters and observers are two main classes of dynamic state estimation (DSE) routines. Power system DSE has been implemented by various Kalman filters, such as the extended Kalman filter (EKF) and the unscented Kalman filter (UKF). In this paper, we discuss two challenges for an effective power system DSE: (a) model uncertainty and (b) potential cyber attacks. To address this, the cubature Kalman filter (CKF) and a nonlinear observer are introduced and implemented. Various Kalman filters and the observer are then tested on the 16-machine, 68-bus system given realistic scenarios under model uncertainty and different types of cyber attacks against synchrophasor measurements. It is shown that CKF and the observer are more robust to model uncertainty and cyber attacks than their counterparts. Based on the tests, a thorough qualitative comparison is also performed for Kalman filter routines and observers.
140 - Ivan Kasanicky , Jan Mandel , 2014
A new type of ensemble Kalman filter is developed, which is based on replacing the sample covariance in the analysis step by its diagonal in a spectral basis. It is proved that this technique improves the aproximation of the covariance when the covariance itself is diagonal in the spectral basis, as is the case, e.g., for a second-order stationary random field and the Fourier basis. The method is extended by wavelets to the case when the state variables are random fields, which are not spatially homogeneous. Efficient implementations by the fast Fourier transform (FFT) and discrete wavelet transform (DWT) are presented for several types of observations, including high-dimensional data given on a part of the domain, such as radar and satellite images. Computational experiments confirm that the method performs well on the Lorenz 96 problem and the shallow water equations with very small ensembles and over multiple analysis cycles.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا