Do you want to publish a course? Click here

Deep Kalman Filters

86   0   0.0 ( 0 )
 Publication date 2015
and research's language is English




Ask ChatGPT about the research

Kalman Filters are one of the most influential models of time-varying phenomena. They admit an intuitive probabilistic interpretation, have a simple functional form, and enjoy widespread adoption in a variety of disciplines. Motivated by recent variational methods for learning deep generative models, we introduce a unified algorithm to efficiently learn a broad spectrum of Kalman filters. Of particular interest is the use of temporal generative models for counterfactual inference. We investigate the efficacy of such models for counterfactual inference, and to that end we introduce the Healing MNIST dataset where long-term structure, noise and actions are applied to sequences of digits. We show the efficacy of our method for modeling this dataset. We further show how our model can be used for counterfactual inference for patients, based on electronic health record data of 8,000 patients over 4.5 years.



rate research

Read More

Data assimilation is concerned with sequentially estimating a temporally-evolving state. This task, which arises in a wide range of scientific and engineering applications, is particularly challenging when the state is high-dimensional and the state-space dynamics are unknown. This paper introduces a machine learning framework for learning dynamical systems in data assimilation. Our auto-differentiable ensemble Kalman filters (AD-EnKFs) blend ensemble Kalman filters for state recovery with machine learning tools for learning the dynamics. In doing so, AD-EnKFs leverage the ability of ensemble Kalman filters to scale to high-dimensional states and the power of automatic differentiation to train high-dimensional surrogate models for the dynamics. Numerical results using the Lorenz-96 model show that AD-EnKFs outperform existing methods that use expectation-maximization or particle filters to merge data assimilation and machine learning. In addition, AD-EnKFs are easy to implement and require minimal tuning.
Kalman filters are routinely used for many data fusion applications including navigation, tracking, and simultaneous localization and mapping problems. However, significant time and effort is frequently required to tune various Kalman filter model parameters, e.g. process noise covariance, pre-whitening filter models for non-white noise, etc. Conventional optimization techniques for tuning can get stuck in poor local minima and can be expensive to implement with real sensor data. To address these issues, a new black box Bayesian optimization strategy is developed for automatically tuning Kalman filters. In this approach, performance is characterized by one of two stochastic objective functions: normalized estimation error squared (NEES) when ground truth state models are available, or the normalized innovation error squared (NIS) when only sensor data is available. By intelligently sampling the parameter space to both learn and exploit a nonparametric Gaussian process surrogate function for the NEES/NIS costs, Bayesian optimization can efficiently identify multiple local minima and provide uncertainty quantification on its results.
Various methods have been proposed for the nonlinear filtering problem, including the extended Kalman filter (EKF), iterated extended Kalman filter (IEKF), unscented Kalman filter (UKF) and iterated unscented Kalman filter (IUKF). In this paper two new nonlinear Kalman filters are proposed and investigated, namely the observation-centered extended Kalman filter (OCEKF) and observation-centered unscented Kalman filter (OCUKF). Although the UKF and EKF are common default choices for nonlinear filtering, there are situations where they are bad choices. Examples are given where the EKF and UKF perform very poorly, and the IEKF and OCEKF perform well. In addition the IUKF and OCUKF are generally similar to the IEKF and OCEKF, and also perform well, though care is needed in the choice of tuning parameters when the observation error is small. The reasons for this behaviour are explored in detail.
140 - Ivan Kasanicky , Jan Mandel , 2014
A new type of ensemble Kalman filter is developed, which is based on replacing the sample covariance in the analysis step by its diagonal in a spectral basis. It is proved that this technique improves the aproximation of the covariance when the covariance itself is diagonal in the spectral basis, as is the case, e.g., for a second-order stationary random field and the Fourier basis. The method is extended by wavelets to the case when the state variables are random fields, which are not spatially homogeneous. Efficient implementations by the fast Fourier transform (FFT) and discrete wavelet transform (DWT) are presented for several types of observations, including high-dimensional data given on a part of the domain, such as radar and satellite images. Computational experiments confirm that the method performs well on the Lorenz 96 problem and the shallow water equations with very small ensembles and over multiple analysis cycles.
Variational Inference (VI) combined with Bayesian nonlinear filtering produces the state-of-the-art results for latent trajectory inference. A body of recent works focused on Sequential Monte Carlo (SMC) and its expansion, e.g., Forward Filtering Backward Simulation (FFBSi). These studies achieved a great success, however, remain a serious problem for particle degeneracy. In this paper, we propose Ensemble Kalman Objectives (EnKOs), the hybrid method of VI and Ensemble Kalman Filter (EnKF), to infer the State Space Models (SSMs). Unlike the SMC based methods, the our proposed method can identify the latent dynamics given fewer particles because of its rich particle diversity. We demonstrate that EnKOs outperform the SMC based methods in terms of predictive ability for three benchmark nonlinear dynamics systems tasks.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا