Do you want to publish a course? Click here

Minors and resolutions of non-commutative schemes

205   0   0.0 ( 0 )
 Added by Yuriy Drozd
 Publication date 2015
  fields
and research's language is English




Ask ChatGPT about the research

In this article we develop the theory of minors of non-commutative schemes. This study is motivated by applications in the theory of non-commutative resolutions of singularities of commutative schemes. In particular, we construct a categorical resolution for non-commutative curves and in the rational case show that it can be realized as the derived category of a quasi-hereditary algebra.



rate research

Read More

We identify a class of quasi-compact semi-separated (qcss) twisted presheaves of algebras A for which well-behaved Grothendieck abelian categories of quasi-coherent modules Qch(A) are defined. This class is stable under algebraic deformation, giving rise to a 1-1 correspondence between algebraic deformations of A and abelian deformations of Qch(A). For a qcss presheaf A, we use the Gerstenhaber-Schack (GS) complex to explicitely parameterize the first order deformations. For a twisted presheaf A with central twists, we descibe an alternative category QPr(A) of quasi-coherent presheaves which is equivalent to Qch(A), leading to an alternative, equivalent association of abelian deformations to GS cocycles of qcss presheaves of commutative algebras. Our construction applies to the restriction O of the structure sheaf of a scheme X to a finite semi-separating open affine cover (for which we have an equivalence between Qch(O) and Qch(X)). Under a natural identification of Gerstenhaber-Schack cohomology of O and Hochschild cohomology of X, our construction is shown to be equivalent to Todas construction in the smooth case.
72 - Igor Burban , Yuriy Drozd 2019
In this paper, we study equivalences between the categories of quasi-coherent sheaves on non-commutative noetherian schemes. In particular, give a new proof of Caldararus conjecture about Morita equivalences of Azumaya algebras on noetherian schemes. Moreover, we derive necessary and sufficient condition for two reduced non-commutative curves to be Morita equivalent.
117 - Wahei Hara 2018
The Abuaf-Ueda flop is a 7-dimensional flop related to $G_2$ homogeneous spaces. The derived equivalence for this flop was first proved by Ueda using mutations of semi-orthogonal decompositions. In this article, we give an alternative proof for the derived equivalence using tilting bundles. Our proof also shows the existence of a non-commutative crepant resolution of the singularity appearing in the flopping contraction. We also give some results on moduli spaces of finite-length modules over this non-commutative crepant resolution.
150 - Kentaro Nagao 2009
The aim of this paper is to study an analog of non-commutative Donaldson-Thomas theory corresponding to the refined topological vertex for small crepant resolutions of toric Calabi-Yau 3-folds. We define the invariants using dimer models and provide wall-crossing formulas. In particular, we get normalized generating functions which are unchanged under wall-crossing.
122 - Wahei Hara 2017
Recently, Segal constructed a derived equivalence for an interesting 5-fold flop that was provided by Abuaf. The aim of this article is to add some results for the derived equivalence for Abuafs flop. Concretely, we study the equivalence for Abuafs flop by using Toda-Ueharas tilting bundles and Iyama-Wemysss mutation functors. In addition, we observe a flop-flop=twist result and a multi-mutation=twist result for Abuafs flop.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا