Do you want to publish a course? Click here

On the Abuaf-Ueda Flop via Non-Commutative Crepant Resolutions

118   0   0.0 ( 0 )
 Added by Wahei Hara
 Publication date 2018
  fields
and research's language is English
 Authors Wahei Hara




Ask ChatGPT about the research

The Abuaf-Ueda flop is a 7-dimensional flop related to $G_2$ homogeneous spaces. The derived equivalence for this flop was first proved by Ueda using mutations of semi-orthogonal decompositions. In this article, we give an alternative proof for the derived equivalence using tilting bundles. Our proof also shows the existence of a non-commutative crepant resolution of the singularity appearing in the flopping contraction. We also give some results on moduli spaces of finite-length modules over this non-commutative crepant resolution.



rate research

Read More

122 - Wahei Hara 2017
Recently, Segal constructed a derived equivalence for an interesting 5-fold flop that was provided by Abuaf. The aim of this article is to add some results for the derived equivalence for Abuafs flop. Concretely, we study the equivalence for Abuafs flop by using Toda-Ueharas tilting bundles and Iyama-Wemysss mutation functors. In addition, we observe a flop-flop=twist result and a multi-mutation=twist result for Abuafs flop.
We introduce special classes of non-commutative crepant resolutions (= NCCR) which we call steady and splitting. We show that a singularity has a steady splitting NCCR if and only if it is a quotient singularity by a finite abelian group. We apply our results to toric singularities and dimer models.
150 - Kentaro Nagao 2009
The aim of this paper is to study an analog of non-commutative Donaldson-Thomas theory corresponding to the refined topological vertex for small crepant resolutions of toric Calabi-Yau 3-folds. We define the invariants using dimer models and provide wall-crossing formulas. In particular, we get normalized generating functions which are unchanged under wall-crossing.
200 - Yusuke Nakajima 2016
A consistent dimer model gives a non-commutative crepant resolution (= NCCR) of a $3$-dimensional Gorenstein toric singularity. In particular, it is known that a consistent dimer model gives a nice class of NCCRs called steady if and only if it is homotopy equivalent to a regular hexagonal dimer model. Inspired by this result, we introduce the notion of semi-steady NCCRs, and show a consistent dimer model gives a semi-steady NCCR if and only if it is homotopy equivalent to a regular dimer model.
125 - Yusuke Nakajima 2018
In this paper, we study splitting (or toric) non-commutative crepant resolutions (= NCCRs) of some toric rings. In particular, we consider Hibi rings, which are toric rings arising from partially ordered sets, and show that Gorenstein Hibi rings with class group $mathbb{Z}^2$ have a splitting NCCR. In the appendix, we also discuss Gorenstein toric rings with class group $mathbb{Z}$, in which case the existence of splitting NCCRs is already known. We especially observe the mutations of modules giving splitting NCCRs for the three dimensional case, and show the connectedness of the exchange graph.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا