Do you want to publish a course? Click here

Effect of disorder on the pressure-induced superconducting state of CeAu2Si2

282   0   0.0 ( 0 )
 Added by Zhi Ren
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

CeAu2Si2 is a newly discovered pressure-induced heavy fermion superconductor which shows very unusual interplay between superconductivity and magnetism under pressure. Here we compare the results of high-pressure measurements on single crystalline CeAu2Si2 samples with different levels of disorder. It is found that while the magnetic properties are essentially sample independent, superconductivity is rapidly suppressed when the residual resistivity of the sample increases. We show that the depression of bulk Tc can be well understood in terms of pair breaking by nonmagnetic disorder, which strongly suggests an unconventional pairing state in pressurized CeAu2Si2. Furthermore, increasing the level of disorder leads to the emergence of another phase transition at T* within the magnetic phase, which might be in competition with superconductivity.



rate research

Read More

By means of synchrotron X-ray diffraction, we studied the effect of high pressure, P, up to 13 GPa on the room temperature crystal structure of superconducting CaC6. In this P range, no change of the pristine space group symmetry, textit{R=3m}, is found. However, at 9 GPa, i.e. close to the critical value at which a large T_c reduction was reported recently, we observed a compressibility jump concomitant to a large broadening of Bragg peaks. The reversibility of both effects upon depressurization and symmetry arguments give evidence of an order-disorder phase transition of second order, presumably associated with the Ca sublattice, which provides a full account for the above Tc reduction.
We report on temperature-dependent soft X-ray absorption spectroscopy (XAS) measurements utilizing linearly polarized synchrotron radiation to probe magnetic phase transitions in iron-rich Fe1+yTe. X-ray magnetic linear dichroism (XMLD) signals, which sense magnetic ordering processes at surfaces, start to increase monotonically below the Neel temperature TN = 57 K. This increase is due to a progressive bicollinear antiferromagnetic (AFM) alignment of Fe spins of the monoclinic Fe1+yTe parent phase. This AFM alignment was achieved by a [100]-oriented biasing field favoring a single-domain state during cooling across TN. Our specific heat and magnetization measurements confirm the bulk character of this AFM phase transition. On longer time scales, however, we observe that the field-biased AFM state is highly unstable even at the lowest temperature of T = 3 K. After switching off the biasing field, the XMLD signal decays exponentially with a time constant {tau} = 1506 s. The initial XMLD signal is restored only upon repeating a cycle consisting of heating and field-cooling through TN. We explain the time effect by a gradual formation of a multi-domain state with 90 deg rotated AFM domains, promoted by structural disorder, facilitating the motion of twin-domains. Significant disorder in our Fe1+yTe sample is evident from our X-ray diffraction and specific heat data. The stability of magnetic phases in Fe-chalcogenides is an important material property, since the Fe(Te1-xSex) phase diagram shows magnetism intimately connected with superconductivity.
We study normal state electrical, thermoelectrical and thermal transport in polycrystalline BiS2-based compounds, which become superconducting by F doping on the O site. In particular we explore undoped LaOBiS2 and doped LaO0.5F0.5BiS2 samples, prepared either with or without high pressure annealing, in order to evidence the roles of doping and preparation conditions. The high pressure annealed sample exhibits room temperature values of resistivity ro around 5 mohmcm, Seebeck coefficient S around -20 microV/K and thermal conductivity k around 1.5 W/Km, while the Hall resistance RH is negative at all temperatures and its value is -10-8 m3/C at low temperature. The sample prepared at ambient pressure exhibits RH positive in sign and five times larger in magnitude, and S negative in sign and slightly smaller in magnitude. These results reveal a complex multiband evolution brought about by high pressure annealing. In particular, the sign inversion and magnitude suppression of RH, indicating increased electron-type carrier density in the high pressure sample, may be closely related to previous findings about change in lattice parameters and enhancement of superconducting Tc by high pressure annealing. As for the undoped sample, it exhibits the 10 times larger resistivity, 10 times larger |S| and 10 times larger |RH| than its doped counterpart, consistently with its insulating nature. Our results point out the dramatic effect of preparation conditions in affecting charge carrier density as well as structural, band and electronic parameters in these systems.
We report drive-response experiments on individual superconducting vortices on a plane, a realization for a 1+1-dimensional directed polymer in random media. For this we use magnetic force microscopy (MFM) to image and manipulate individual vortices trapped on a twin boundary in YBCO near optimal doping. We find that when we drag a vortex with the magnetic tip it moves in a series of jumps. As theory suggests the jump-size distribution does not depend on the applied force and is consistent with power-law behavior. The measured power is much larger than widely accepted theoretical calculations.
We calculate the density of states of an inhomogeneous superconductor in a magnetic field where the positions of vortices are distributed completely at random. We consider both the cases of s-wave and d-wave pairing. For both pairing symmetries either the presence of disorder or increasing the density of vortices enhances the low energy density of states. In the s-wave case the gap is filled and the density of states is a power law at low energies. In the d-wave case the density of states is finite at zero energy and it rises linearly at very low energies in the Dirac isotropic case (alpha_D=t/Delta_0=1, where t is the hopping integral and Delta_0 is the amplitude of the order parameter). For slightly higher energies the density of states crosses over to a quadratic behavior. As the Dirac anisotropy increases (as Delta_0 decreases with respect to the hopping term) the linear region decreases in width. Neglecting this small region the density of states interpolates between quadratic and back to linear as alpha_D increases. The low energy states are strongly peaked near the vortex cores.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا