We report drive-response experiments on individual superconducting vortices on a plane, a realization for a 1+1-dimensional directed polymer in random media. For this we use magnetic force microscopy (MFM) to image and manipulate individual vortices trapped on a twin boundary in YBCO near optimal doping. We find that when we drag a vortex with the magnetic tip it moves in a series of jumps. As theory suggests the jump-size distribution does not depend on the applied force and is consistent with power-law behavior. The measured power is much larger than widely accepted theoretical calculations.
We investigate the effect of correlated disorder on Majorana zero modes (MZMs) bound to magnetic vortices in two-dimensional topological superconductors. By starting from a lattice model of interacting fermions with a $p_x pm i p_y$ superconducting ground state in the disorder-free limit, we use perturbation theory to describe the enhancement of the Majorana localization length at weak disorder and a self-consistent numerical solution to understand the breakdown of the MZMs at strong disorder. We find that correlated disorder has a much stronger effect on the MZMs than uncorrelated disorder and that it is most detrimental if the disorder correlation length $ell$ is on the same order as the superconducting coherence length $xi$. In contrast, MZMs can survive stronger disorder for $ell ll xi$ as random variations cancel each other within the length scale of $xi$, while an MZM may survive up to very strong disorder for $ell gg xi$ if it is located in a favorable domain of the given disorder realization.
Two dimensional topological superconductors (TS) host chiral Majorana modes (MMs) localized at the boundaries. In this work, within quasiclassical approximation we study the effect of disorder on the localization length of MMs in two dimensional spin-orbit (SO) coupled superconductors. We find nonmonotonic behavior of the Majorana localization length as a function of disorder strength. At weak disorder, the Majorana localization length decreases with an increasing disorder strength. Decreasing the disorder scattering time below a critical value $tau_c$, the Majorana localization length starts to increase. The critical scattering time depends on the relative magnitudes of the two ingredients behind TS: SO coupling and exchange field. For dominating SO coupling, $tau_c$ is small and vice versa for the dominating exchange field.
When a magnetic field is applied, the mixed state of a conventional Type II superconductor gets destroyed at the upper critical field Hc2, where the normal vortex cores overlap with each other. Here, we show that in the presence weak and homogeneous disorder the destruction of superconductivity with field follows a different route. Starting with a weakly disordered NbN thin film ( Tc ~ 9K ), we show that under the application of magnetic field the superconducting state becomes increasingly granular, where lines of vortices separate the superconducting islands. Consequently, phase fluctuations between these islands give rise to a field induced pseudogap phase, which has a gap in the electronic density of states but where the global zero resistance state is destroyed.
The simultaneous interplay of strong electron-electron correlations, topological zero-energy states, and disorder is yet an unexplored territory but of immense interest due to their inevitable presence in many materials. Copper oxide high-temperature superconductors (cuprates) with pair breaking edges host a flat band of topological zero-energy states, making them an ideal playground where strong correlations, topology, and disorder are strongly intertwined. Here we show that this interplay in cuprates generates a new phase of matter: a fully gapped phase crystal state that breaks both translational and time reversal invariance, characterized by a modulation of the $d$-wave superconducting phase co-existing with a modulating extended $s$-wave superconducting order. In contrast to conventional wisdom, we find that this phase crystal state is remarkably robust to omnipresent disorder, but only in the presence of strong correlations, thus giving a clear route to its experimental realization.
We explore experimentally a quantum metamaterial based on a superconducting chip with 25 frequency-tunable transmon qubits coupled to a common coplanar resonator. The collective bright and dark modes are probed via the microwave response, i.e., by measuring the transmission amplitude of an external microwave signal. All qubits have individual control and readout lines. Their frequency tunability allows to change the number N of resonantly coupled qubits and also to introduce a disorder in their excitation frequencies with preassigned distributions. While increasing N, we demonstrate the expected $N^{1/2}$ scaling law for the energy gap (Rabi splitting) between bright modes around the cavity frequency. By introducing a controllable disorder and averaging the transmission amplitude over a large number of realizations, we demonstrate a decay of mesoscopic fluctuations which mimics an approach towards the thermodynamic limit. The collective bright states survive in the presence of disorder when the strength of individual qubit coupling to the cavity dominates over the disorder strength.