Do you want to publish a course? Click here

The Cosmic Dawn and Epoch of Reionization with the Square Kilometre Array

204   0   0.0 ( 0 )
 Added by L. V. E. Koopmans
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

Concerted effort is currently ongoing to open up the Epoch of Reionization (EoR) ($zsim$15-6) for studies with IR and radio telescopes. Whereas IR detections have been made of sources (Lyman-$alpha$ emitters, quasars and drop-outs) in this redshift regime in relatively small fields of view, no direct detection of neutral hydrogen, via the redshifted 21-cm line, has yet been established. Such a direct detection is expected in the coming years, with ongoing surveys, and could open up the entire universe from $zsim$6-200 for astrophysical and cosmological studies, opening not only the EoR, but also its preceding Cosmic Dawn ($zsim$30-15) and possibly even the later phases of the Dark Ages ($zsim$200-30). All currently ongoing experiments attempt statistical detections of the 21-cm signal during the EoR, with limited signal-to-noise. Direct imaging, except maybe on the largest (degree) scales at lower redshifts, as well as higher redshifts will remain out of reach. The Square Kilometre Array(SKA) will revolutionize the field, allowing direct imaging of neutral hydrogen from scales of arc-minutes to degrees over most of the redshift range $zsim$6-28 with SKA1-LOW, and possibly even higher redshifts with the SKA2-LOW. In this SKA will be unique, and in parallel provide enormous potential of synergy with other upcoming facilities (e.g. JWST). In this chapter we summarize the physics of 21-cm emission, the different phases the universe is thought to go through, and the observables that the SKA can probe, referring where needed to detailed chapters in this volume (Abridged).



rate research

Read More

The Square Kilometre Array (SKA) will have a low frequency component (SKA-low) which has as one of its main science goals the study of the redshifted 21cm line from the earliest phases of star and galaxy formation in the Universe. This 21cm signal provides a new and unique window on both the formation of the first stars and accreting black holes and the later period of substantial ionization of the intergalactic medium. The signal will teach us fundamental new things about the earliest phases of structure formation, cosmology and even has the potential to lead to the discovery of new physical phenomena. Here we present a white paper with an overview of the science questions that SKA-low can address, how we plan to tackle these questions and what this implies for the basic design of the telescope.
We provide an overview of 21cm tomography of the Cosmic Dawn and Epoch of Reionization as possible with SKA-Low. We show why tomography is essential for studying CD/EoR and present the scales which can be imaged at different frequencies for the different phases of SKA- Low. Next we discuss the different ways in which tomographic data can be analyzed. We end with an overview of science questions which can only be answered by tomography, ranging from the characterization of individual objects to understanding the global processes shaping the Universe during the CD/EoR
130 - Steve Rawlings 2011
We review how the Square Kilometre Array (SKA) will address fundamental questions in cosmology, focussing on its use for neutral Hydrogen (HI) surveys. A key enabler of its unique capabilities will be large (but smart) receptors in the form of aperture arrays. We outline the likely contributions of Phase-1 of the SKA (SKA1), Phase-2 SKA (SKA2) and pathfinding activities (SKA0). We emphasise the important role of cross-correlation between SKA HI results and those at other wavebands such as: surveys for objects in the EoR with VISTA and the SKA itself; and huge optical and near-infrared redshift surveys, such as those with HETDEX and Euclid. We note that the SKA will contribute in other ways to cosmology, e.g. through gravitational lensing and $H_{0}$ studies.
The exceptional sensitivity of the SKA will allow observations of the Cosmic Dawn and Epoch of Reionization (CD/EoR) in unprecedented detail, both spectrally and spatially. This wealth of information is buried under Galactic and extragalactic foregrounds, which must be removed accurately and precisely in order to reveal the cosmological signal. This problem has been addressed already for the previous generation of radio telescopes, but the application to SKA is different in many aspects. In this chapter we summarise the contributions to the field of foreground removal in the context of high redshift and high sensitivity 21-cm measurements. We use a state-of-the-art simulation of the SKA Phase 1 observations complete with cosmological signal, foregrounds and frequency-dependent instrumental effects to test both parametric and non-parametric foreground removal methods. We compare the recovered cosmological signal using several different statistics and explore one of the most exciting possibilities with the SKA --- imaging of the ionized bubbles. We find that with current methods it is possible to remove the foregrounds with great accuracy and to get impressive power spectra and images of the cosmological signal. The frequency-dependent PSF of the instrument complicates this recovery, so we resort to splitting the observation bandwidth into smaller segments, each of a common resolution. If the foregrounds are allowed a random variation from the smooth power law along the line of sight, methods exploiting the smoothness of foregrounds or a parametrization of their behaviour are challenged much more than non-parametric ones. However, we show that correction techniques can be implemented to restore the performances of parametric approaches, as long as the first-order approximation of a power law stands.
Studying the cosmic dawn and the epoch of reionization through the redshifted 21 cm line are among the major science goals of the SKA1. Their significance lies in the fact that they are closely related to the very first stars in the universe. Interpreting the upcoming data would require detailed modelling of the relevant physical processes. In this article, we focus on the theoretical models of reionization that have been worked out by various groups working in India with the upcoming SKA in mind. These models include purely analytical and semi-numerical calculations as well as fully numerical radiative transfer simulations. The predictions of the 21 cm signal from these models would be useful in constraining the properties of the early galaxies using the SKA data.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا