Do you want to publish a course? Click here

Near-field microscopy with a scanning nitrogen-vacancy color center in a diamond nanocrystal: A brief review

190   0   0.0 ( 0 )
 Added by Serge Huant
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We review our recent developments of near-field scanning optical microscopy (NSOM) that uses an active tip made of a single fluorescent nanodiamond (ND) grafted onto the apex of a substrate fiber tip. The ND hosting a limited number of nitrogen-vacancy (NV) color centers, such a tip is a scanning quantum source of light. The method for preparing the ND-based tips and their basic properties are summarized. Then we discuss theoretically the concept of spatial resolution that is achievable in this special NSOM configuration and find it to be only limited by the scan height over the imaged system, in contrast with the standard aperture-tip NSOM whose resolution depends critically on both the scan height and aperture diameter. Finally, we describe a scheme we have introduced recently for high-resolution imaging of nanoplasmonic structures with ND-based tips that is capable of approaching the ultimate resolution anticipated by theory.



rate research

Read More

Solid-state quantum emitters have emerged as robust single-photon sources and addressable spins: key components in rapidly developing quantum technologies for broadband magnetometry, biological sensing, and quantum information science. Performance in these applications, be it magnetometer sensitivity or quantum key generation rate, is limited by the number of photons detected. However, efficient collection of a quantum emitters photoluminescence (PL) is challenging as its atomic scale necessitates diffraction-limited imaging with nanometer-precision alignment, oftentimes at cryogenic temperatures. In this letter, we image an individual quantum emitter, an isolated nitrogen-vacancy (NV) center in diamond, using a dielectric metalens composed of subwavelength pillars etched into the diamonds surface. The metalens eliminates the need for an objective by operating as a high-transmission-efficiency immersion lens with a numerical aperture (NA) greater than 1.0. This design provides a scalable approach for fiber coupling solid-state quantum emitters that will enable the development of deployable quantum devices.
The photoluminescence of nitrogen-vacancy (NV) centers in diamond nanoparticles exhibits specific properties as compared to NV centers in bulk diamond. For instance large fluctuations of lifetime and brightness from particle to particle have been reported. It has also been observed that for nanocrystals much smaller than the mean luminescence wavelength, the particle size sets a lower threshold for resolution in Stimulated Emission Depletion (STED) microscopy. We show that all these features can be quantitatively understood by realizing that the absorption-emission of light by the NV center is mediated by the diamond nanoparticle which behaves as a dielectric nanoantenna.
Detection of AC magnetic fields at the nanoscale is critical in applications ranging from fundamental physics to materials science. Isolated quantum spin defects, such as the nitrogen-vacancy center in diamond, can achieve the desired spatial resolution with high sensitivity. Still, vector AC magnetometry currently relies on using different orientations of an ensemble of sensors, with degraded spatial resolution, and a protocol based on a single NV is lacking. Here we propose and experimentally demonstrate a protocol that exploits a single NV to reconstruct the vectorial components of an AC magnetic field by tuning a continuous driving to distinct resonance conditions. We map the spatial distribution of an AC field generated by a copper wire on the surface of the diamond. The proposed protocol combines high sensitivity, broad dynamic range, and sensitivity to both coherent and stochastic signals, with broad applications in condensed matter physics, such as probing spin fluctuations.
We demonstrate a quantum nanophotonics platform based on germanium-vacancy (GeV) color centers in fiber-coupled diamond nanophotonic waveguides. We show that GeV optical transitions have a high quantum efficiency and are nearly lifetime-broadened in such nanophotonic structures. These properties yield an efficient interface between waveguide photons and a single GeV without the use of a cavity or slow-light waveguide. As a result, a single GeV center reduces waveguide transmission by $18 pm 1%$ on resonance in a single pass. We use a nanophotonic interferometer to perform homodyne detection of GeV resonance fluorescence. By probing the photon statistics of the output field, we demonstrate that the GeV-waveguide system is nonlinear at the single-photon level.
The electrical conductivity of a material can feature subtle, nontrivial, and spatially-varying signatures with critical insight into the materials underlying physics. Here we demonstrate a conductivity imaging technique based on the atom-sized nitrogen-vacancy (NV) defect in diamond that offers local, quantitative, and noninvasive conductivity imaging with nanoscale spatial resolution. We monitor the spin relaxation rate of a single NV center in a scanning probe geometry to quantitatively image the magnetic fluctuations produced by thermal electron motion in nanopatterned metallic conductors. We achieve 40-nm scale spatial resolution of the conductivity and realize a 25-fold increase in imaging speed by implementing spin-to-charge conversion readout of a shallow NV center. NV-based conductivity imaging can probe condensed-matter systems in a new regime, and as a model example, we project readily achievable imaging of nanoscale phase separation in complex oxides.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا