We demonstrate a quantum nanophotonics platform based on germanium-vacancy (GeV) color centers in fiber-coupled diamond nanophotonic waveguides. We show that GeV optical transitions have a high quantum efficiency and are nearly lifetime-broadened in such nanophotonic structures. These properties yield an efficient interface between waveguide photons and a single GeV without the use of a cavity or slow-light waveguide. As a result, a single GeV center reduces waveguide transmission by $18 pm 1%$ on resonance in a single pass. We use a nanophotonic interferometer to perform homodyne detection of GeV resonance fluorescence. By probing the photon statistics of the output field, we demonstrate that the GeV-waveguide system is nonlinear at the single-photon level.
Local control of the generation and interaction of indistinguishable single photons is a key requirement for photonic quantum networks. Waveguide-based architectures, in which embedded quantum emitters act as both highly coherent single photon sources and as nonlinear elements to mediate photon-photon interactions, offer a scalable route to such networks. However, local electrical control of a quantum optical nonlinearity has yet to be demonstrated in a waveguide geometry. Here, we demonstrate local electrical tuning and switching of single photon generation and nonlinear interaction by embedding a quantum dot in a nano-photonic waveguide with enhanced light-matter interaction. A power-dependent transmission extinction as large as 40$pm$2% and clear, voltage-controlled bunching in the photon statistics of the transmitted light demonstrate the single photon character of the nonlinearity. The deterministic nature of the nonlinearity is particularly attractive for the future realization of photonic gates for scalable nano-photonic waveguide-based quantum information processing.
We theoretically propose a method to realize optical nonreciprocity in rotating nano-diamond with a nitrogen-vacancy (NV) center. Because of the relative motion of the NV center with respect to the propagating fields, the frequencies of the fields are shifted due to the Doppler effect. When the control and probe fields are incident to the NV center from the same direction, the two-photon resonance still holds as the Doppler shifts of the two fields are the same. Thus, due to the electromagnetically-induced transparency (EIT), the probe light can pass through the NV center nearly without absorption. However, when the two fields propagate in opposite directions, the probe light can not effectively pass through the NV center as a result of the breakdown of two-photon resonance.
Nanoscale quantum optics explores quantum phenomena in nanophotonics systems for advancing fundamental knowledge in nano and quantum optics and for harnessing the laws of quantum physics in the development of new photonics-based technologies. Here, we review recent progress in the field with emphasis on four main research areas: Generation, detection, manipulation and storage of quantum states of light at the nanoscale, Nonlinearities and ultrafast processes in nanostructured media, Nanoscale quantum coherence, Cooperative effects, correlations and many-body physics tailored by strongly confined optical fields. The focus is both on basic developments and technological implications, especially for what concerns information and communication technology, sensing and metrology, and energy efficiency.
We present high-resolution, all-optical thermometry based on ensembles of GeV color center in diamond. Due to the unique properties of diamond, an all-optical approach using this method opens a way to produce non-invasive, back-action-free temperature measurements in a wide range of temperatures, from a few Kelvin to 1100 Kelvin.
We demonstrate an all-optical thermometer based on an ensemble of silicon-vacancy centers (SiVs) in diamond by utilizing a temperature dependent shift of the SiV optical zero-phonon line transition frequency, $Deltalambda/Delta T= 6.8,mathrm{GHz/K}$. Using SiVs in bulk diamond, we achieve $70,mathrm{mK}$ precision at room temperature with a sensitivity of $360,mathrm{mK/sqrt{Hz}}$. Finally, we use SiVs in $200,mathrm{nm}$ nanodiamonds as local temperature probes with $521,mathrm{ mK/sqrt{Hz}}$ sensitivity. These results open up new possibilities for nanoscale thermometry in biology, chemistry, and physics, paving the way for control of complex nanoscale systems.
Mihir K. Bhaskar
,Denis D. Sukachev
,Alp Sipahigil
.
(2016)
.
"Quantum Nonlinear Optics with a Germanium-Vacancy Color Center in a Nanoscale Diamond Waveguide"
.
Mihir Bhaskar
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا