Do you want to publish a course? Click here

DarkSide50 results from first argon run

283   0   0.0 ( 0 )
 Added by Davide D'Angelo Dr.
 Publication date 2015
  fields Physics
and research's language is English
 Authors D. DAngelo




Ask ChatGPT about the research

DarkSide (DS) at Gran Sasso underground laboratory is a direct dark matter search program based on TPCs with liquid argon from underground sources. The DS-50 TPC, with 50 kg of liquid argon is installed inside active neutron and muon detectors. DS-50 has been taking data since Nov 2013, collecting more than 10^7 events with atmospheric argon. This data represents an exposure to the largest background, beta decays of 39Ar, comparable to the full 3 y run of DS-50 with underground argon. When analysed with a threshold that would give a sensitivity in the full run of about 10^-45 cm2 at a WIMP mass of 100 GeV, there is no 39Ar background observed. We present the detector design and performance, the results from the atmospheric argon run and plans for an upscale to a multi-ton detector along with its sensitivity.



rate research

Read More

131 - Yue Meng , Zhou Wang , Yi Tao 2021
We report the first dark matter search results using the commissioning data from PandaX-4T. Using a time projection chamber with 3.7-tonne of liquid xenon target and an exposure of 0.63~tonne$cdot$year, 1058 candidate events are identified within an approximate electron equivalent energy window between 1 and 30 keV. No significant excess over background is observed. Our data set a stringent limit to the dark matter-nucleon spin-independent interactions, with a lowest excluded cross section (90% C.L.) of $3.3times10^{-47} $cm$^2$ at a dark matter mass of 30 GeV/$c^2$.
We present the results of a search for WIMPs from the commissioning run of the PandaX-II experiment located at the China Jinping underground Laboratory. A WIMP search data set with an exposure of 306$times$19.1 kg-day was taken, while its dominant $^{85}$Kr background was used as the electron recoil calibration. No WIMP candidates are identified, and a 90% upper limit is set on the spin-independent elastic WIMP-nucleon cross section with a lowest excluded cross section of 2.97$times$10$^{-45}$~cm$^2$ at a WIMP mass of 44.7~GeV/c$^2$.
This paper describes the operation of the Coherent CAPTAIN-Mills (CCM) detector located in the Lujan Neutron Science Center at Los Alamos National Laboratory. CCM is a 10-ton liquid argon (LAr) detector located 20 meters from a high flux neutron/neutrino source and is designed to search for sterile neutrinos and light dark matter. An engineering run was performed in Fall 2019 to study the characteristics of the CCM120 detector by searching for signals consistent with sterile neutrinos and light dark matter resulting from $pi^+$ and $pi^0$ decays in the tungsten target. New parameter space in a leptophobic dark matter model was excluded for dark matter masses between $sim2.5$ and 60 MeV. The lessons learned from this run have guided the development and construction of the new CCM200 detector that will begin operations in 2021 and significantly improve on these searches.
123 - V. Alenkov , H. W. Bae , J. Beyer 2019
The Advanced Molybdenum-based Rare process Experiment (AMoRE) aims to search for neutrinoless double beta decay (0$ ubetabeta$) of $^{100}$Mo with $sim$100 kg of $^{100}$Mo-enriched molybdenum embedded in cryogenic detectors with a dual heat and light readout. At the current, pilot stage of the AMoRE project we employ six calcium molybdate crystals with a total mass of 1.9 kg, produced from $^{48}$Ca-depleted calcium and $^{100}$Mo-enriched molybdenum ($^{48textrm{depl}}$Ca$^{100}$MoO$_4$). The simultaneous detection of heat(phonon) and scintillation (photon) signals is realized with high resolution metallic magnetic calorimeter sensors that operate at milli-Kelvin temperatures. This stage of the project is carried out in the Yangyang underground laboratory at a depth of 700 m. We report first results from the AMoRE-Pilot $0 ubetabeta$ search with a 111 kg$cdot$d live exposure of $^{48textrm{depl}}$Ca$^{100}$MoO$_4$ crystals. No evidence for $0 ubetabeta$ decay of $^{100}$Mo is found, and a upper limit is set for the half-life of 0$ ubetabeta$ of $^{100}$Mo of $T^{0 u}_{1/2} > 9.5times10^{22}$ y at 90% C.L.. This limit corresponds to an effective Majorana neutrino mass limit in the range $langle m_{betabeta}ranglele(1.2-2.1)$ eV.
The axion is a promising dark matter candidate, which was originally proposed to solve the strong-CP problem in particle physics. To date, the available parameter space for axion and axion-like particle dark matter is relatively unexplored, particularly at masses $m_alesssim1,mu$eV. ABRACADABRA is a new experimental program to search for axion dark matter over a broad range of masses, $10^{-12}lesssim m_alesssim10^{-6}$ eV. ABRACADABRA-10 cm is a small-scale prototype for a future detector that could be sensitive to the QCD axion. In this Letter, we present the first results from a 1 month search for axions with ABRACADABRA-10 cm. We find no evidence for axion-like cosmic dark matter and set 95% C.L. upper limits on the axion-photon coupling between $g_{agammagamma}<1.4times10^{-10}$ GeV$^{-1}$ and $g_{agammagamma}<3.3times10^{-9}$ GeV$^{-1}$ over the mass range $3.1times10^{-10}$ eV - $8.3times10^{-9}$ eV. These results are competitive with the most stringent astrophysical constraints in this mass range.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا