Do you want to publish a course? Click here

Dark Matter Search Results from the PandaX-4T Commissioning Run

132   0   0.0 ( 0 )
 Added by Ning Zhou
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report the first dark matter search results using the commissioning data from PandaX-4T. Using a time projection chamber with 3.7-tonne of liquid xenon target and an exposure of 0.63~tonne$cdot$year, 1058 candidate events are identified within an approximate electron equivalent energy window between 1 and 30 keV. No significant excess over background is observed. Our data set a stringent limit to the dark matter-nucleon spin-independent interactions, with a lowest excluded cross section (90% C.L.) of $3.3times10^{-47} $cm$^2$ at a dark matter mass of 30 GeV/$c^2$.



rate research

Read More

We present the results of a search for WIMPs from the commissioning run of the PandaX-II experiment located at the China Jinping underground Laboratory. A WIMP search data set with an exposure of 306$times$19.1 kg-day was taken, while its dominant $^{85}$Kr background was used as the electron recoil calibration. No WIMP candidates are identified, and a 90% upper limit is set on the spin-independent elastic WIMP-nucleon cross section with a lowest excluded cross section of 2.97$times$10$^{-45}$~cm$^2$ at a WIMP mass of 44.7~GeV/c$^2$.
New data are reported from a second run of the 2-liter PICO-2L C$_3$F$_8$ bubble chamber with a total exposure of 129$,$kg-days at a thermodynamic threshold energy of 3.3$,$keV. These data show that measures taken to control particulate contamination in the superheated fluid resulted in the absence of the anomalous background events observed in the first run of this bubble chamber. One single nuclear-recoil event was observed in the data, consistent both with the predicted background rate from neutrons and with the observed rate of unambiguous multiple-bubble neutron scattering events. The chamber exhibits the same excellent electron-recoil and alpha decay rejection as was previously reported. These data provide the most stringent direct detection constraints on weakly interacting massive particle (WIMP)-proton spin-dependent scattering to date for WIMP masses $<$ 50$,$GeV/c$^2$.
We report on the first dark-matter (DM) search results from PandaX-I, a low threshold dual-phase xenon experiment operating at the China Jinping Underground Laboratory. In the 37-kg liquid xenon target with 17.4 live-days of exposure, no DM particle candidate event was found. This result sets a stringent limit for low-mass DM particles and disfavors the interpretation of previously-reported positive experimental results. The minimum upper limit, $3.7times10^{-44}$,cm$^2$, for the spin-independent isoscalar DM-particle-nucleon scattering cross section is obtained at a DM-particle mass of 49,GeV/c$^2$ at 90% confidence level.
This paper describes the operation of the Coherent CAPTAIN-Mills (CCM) detector located in the Lujan Neutron Science Center at Los Alamos National Laboratory. CCM is a 10-ton liquid argon (LAr) detector located 20 meters from a high flux neutron/neutrino source and is designed to search for sterile neutrinos and light dark matter. An engineering run was performed in Fall 2019 to study the characteristics of the CCM120 detector by searching for signals consistent with sterile neutrinos and light dark matter resulting from $pi^+$ and $pi^0$ decays in the tungsten target. New parameter space in a leptophobic dark matter model was excluded for dark matter masses between $sim2.5$ and 60 MeV. The lessons learned from this run have guided the development and construction of the new CCM200 detector that will begin operations in 2021 and significantly improve on these searches.
The PandaX-4T experiment, a four-ton scale dark matter direct detection experiment, is being planned at the China Jinping Underground Laboratory. In this paper we present a simulation study of the expected background in this experiment. In a 2.8-ton fiducial mass and the signal region between 1 to 10 keV electron equivalent energy, the total electron recoil background is found to be 4.9x10^{-5} /(kg day keV). The nuclear recoil background in the same region is 2.8x10^{-7}/(kg day keV). With an exposure of 5.6 ton-years, the sensitivity of PandaX-4T could reach a minimum spin-independent dark matter-nucleon cross section of 6x10^{-48} cm^{2} at a dark matter mass of 40 GeV/c^{2}.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا