Do you want to publish a course? Click here

Dyonic non-Abelian vortex strings in supersymmetric and non-supersymmetric theories: tensions and higher derivative corrections

197   0   0.0 ( 0 )
 Added by Minoru Eto
 Publication date 2014
  fields
and research's language is English




Ask ChatGPT about the research

Dyonic non-Abelian local/semi-global vortex strings are studied in detail in supersymmetric/non-supersymmetric Yang-Mills-Higgs theories. While the BPS tension formula is known to be the same as that for the BPS dyonic instanton, we find that the non-BPS tension formula is approximated very well by the well-known tension formula of the BPS dyon. We show that this mysterious tension formula for the dyonic non-BPS vortex stings can be understood from the perspective of a low energy effective field theory. Furthermore, we propose an efficient method to obtain an effective theory of a single vortex string, which includes not only lower derivative terms but also all order derivative corrections by making use of the tension formula. We also find a novel dyonic vortex string whose internal orientation vectors rotate in time and spiral along the string axis.



rate research

Read More

We discuss dual formulations of vortex strings (magnetic flux tubes) in the four-dimensional ${cal N} =1$ supersymmetric Abelian Higgs model with the Fayet--Iliopoulos term in the superspace formalism. The Lagrangian of the model is dualized into a Lagrangian of the $BF$-type described by a chiral spinor gauge superfield including a 2-form gauge field. The dual Lagrangian is further dualized into a Lagrangian given by a chiral spinor superfield including a massive 2-form field. In both of the dual formulations, we obtain a superfield into which the vortex strings and their superpartners are embedded. We show the dual Lagrangians in terms of a superspace and a component formalism. In these dual Lagrangians, we explicitly show that the vortex strings of the original model are described by a string current electrically coupled with the 2-form gauge field or the massive 2-form field.
We consider the non-supersymmetric magic theories based on the split quaternion and the split complex division algebras. We show that these theories arise as Ehlers $SL(2,mathbb{R})$ and $SL(3,mathbb{R})$ truncations of the maximal supergravity theory, exploiting techniques related to very-extended Kac-Moody algebras. We also generalise the procedure to other $SL(n,mathbb{R})$ truncations, resulting in additional classes of non-supersymmetric theories, as well as to truncations of non-maximal theories. Finally, we discuss duality orbits of extremal black-hole solutions in some of these non-supersymmetric theories.
We consider a topological coupling between a pseudo-scalar field and a 3-form gauge field in ${cal N}=1$ supersymmetric higher derivative 3-form gauge theories in four spacetime dimensions. We show that ghost/tachyon-free higher derivative Lagrangians with the topological coupling can generate various potentials for the pseudo-scalar field by solving the equation of motion for the 3-form gauge field. We give two examples of higher derivative Lagrangians and the corresponding potentials: one is a quartic order term of the field strength and the other is the term which can generate a cosine-type potential of the pseudo-scalar field.
We present evidence for renormalization group fixed points with dual magnetic descriptions in fourteen new classes of four-dimensional $N=1$ supersymmetric models. Nine of these classes are chiral and many involve two or three gauge groups. These theories are generalizations of models presented earlier by Seiberg, by Kutasov and Schwimmer, and by the present authors. The different classes are interrelated; one can flow from one class to another using confinement or symmetry breaking.
148 - M.J. Strassler 2001
At large N, a field theory and its orbifolds (given by projecting out some of its fields) share the same planar graphs. If the parent-orbifold relation continues even nonperturbatively, then properties such as confinement and chiral symmetry breaking will appear in both parent and orbifold. N=1 supersymmetric Yang-Mills has many nonsupersymmetric orbifolds which resemble QCD. A nonperturbative parent-orbifold relation predicts many surprising effects, exactly valid at large N, and expected to suffer only mild 1/N corrections. These include degeneracies among bosonic hadrons and exact predictions for domain wall tensions. Other predictions are valid even when supersymmetry in the parent is broken. Since these theories are QCD-like, simulation is possible, so these predictions may be numerically tested. The method also relates wide classes of nonsupersymmetric theories.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا