Do you want to publish a course? Click here

Non-Supersymmetric Magic Theories and Ehlers Truncations

199   0   0.0 ( 0 )
 Added by Fabio Riccioni
 Publication date 2017
  fields
and research's language is English




Ask ChatGPT about the research

We consider the non-supersymmetric magic theories based on the split quaternion and the split complex division algebras. We show that these theories arise as Ehlers $SL(2,mathbb{R})$ and $SL(3,mathbb{R})$ truncations of the maximal supergravity theory, exploiting techniques related to very-extended Kac-Moody algebras. We also generalise the procedure to other $SL(n,mathbb{R})$ truncations, resulting in additional classes of non-supersymmetric theories, as well as to truncations of non-maximal theories. Finally, we discuss duality orbits of extremal black-hole solutions in some of these non-supersymmetric theories.



rate research

Read More

Dyonic non-Abelian local/semi-global vortex strings are studied in detail in supersymmetric/non-supersymmetric Yang-Mills-Higgs theories. While the BPS tension formula is known to be the same as that for the BPS dyonic instanton, we find that the non-BPS tension formula is approximated very well by the well-known tension formula of the BPS dyon. We show that this mysterious tension formula for the dyonic non-BPS vortex stings can be understood from the perspective of a low energy effective field theory. Furthermore, we propose an efficient method to obtain an effective theory of a single vortex string, which includes not only lower derivative terms but also all order derivative corrections by making use of the tension formula. We also find a novel dyonic vortex string whose internal orientation vectors rotate in time and spiral along the string axis.
We study field models for which a quantum action (i.e. the action appearing in the generating functional of Green functions) is invariant under supersymmetric transformations. We derive the Ward identity which is direct consequence of this invariance. We consider a change of variables in functional integral connected with supersymmetric transformations when its parameter is replaced by a nilpotent functional of fields. Exact form of the corresponding Jacobian is found. We find restrictions on generators of supersymmetric transformations when a consistent quantum description of given field theories exists.
We present evidence for renormalization group fixed points with dual magnetic descriptions in fourteen new classes of four-dimensional $N=1$ supersymmetric models. Nine of these classes are chiral and many involve two or three gauge groups. These theories are generalizations of models presented earlier by Seiberg, by Kutasov and Schwimmer, and by the present authors. The different classes are interrelated; one can flow from one class to another using confinement or symmetry breaking.
Seiberg-Witten solutions of four-dimensional supersymmetric gauge theories possess rich but involved integrable structures. The goal of this paper is to show that an isomonodromy problem provides a unified framework for understanding those various features of integrability. The Seiberg-Witten solution itself can be interpreted as a WKB limit of this isomonodromy problem. The origin of underlying Whitham dynamics (adiabatic deformation of an isospectral problem), too, can be similarly explained by a more refined asymptotic method (multiscale analysis). The case of $N=2$ SU($s$) supersymmetric Yang-Mills theory without matter is considered in detail for illustration. The isomonodromy problem in this case is closely related to the third Painleve equation and its multicomponent analogues. An implicit relation to $ttbar$ fusion of topological sigma models is thereby expected.
148 - M.J. Strassler 2001
At large N, a field theory and its orbifolds (given by projecting out some of its fields) share the same planar graphs. If the parent-orbifold relation continues even nonperturbatively, then properties such as confinement and chiral symmetry breaking will appear in both parent and orbifold. N=1 supersymmetric Yang-Mills has many nonsupersymmetric orbifolds which resemble QCD. A nonperturbative parent-orbifold relation predicts many surprising effects, exactly valid at large N, and expected to suffer only mild 1/N corrections. These include degeneracies among bosonic hadrons and exact predictions for domain wall tensions. Other predictions are valid even when supersymmetry in the parent is broken. Since these theories are QCD-like, simulation is possible, so these predictions may be numerically tested. The method also relates wide classes of nonsupersymmetric theories.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا