No Arabic abstract
We consider a class of models with gauged U(1)_R symmetry in 4D N=1 supergravity that have, at the classical level, a metastable ground state, an infinitesimally small (tunable) positive cosmological constant and a TeV gravitino mass. We analyse if these properties are maintained under the addition of visible sector (MSSM-like) and hidden sector state(s), where the latter may be needed for quantum consistency. We then discuss the anomaly cancellation conditions in supergravity as derived by Freedman, Elvang and Kors and apply their results to the special case of a U(1)_R symmetry, in the presence of the Fayet-Iliopoulos term ($xi$) and Green-Schwarz mechanism(s). We investigate the relation of these anomaly cancellation conditions to the naive field theory approach in global SUSY, in which case U(1)_R cannot even be gauged. We show the two approaches give similar conditions. Their induced constraints at the phenomenological level, on the above models, remain strong even if one lifted the GUT-like conditions for the MSSM gauge couplings. In an anomaly-free model, a tunable, TeV-scale gravitino mass may remain possible provided that the U(1)_R charges of additional hidden sector fermions (constrained by the cubic anomaly alone) do not conflict with the related values of U(1)_R charges of their scalar superpartners, constrained by existence of a stable ground state. This issue may be bypassed by tuning instead the coefficients of the Kahler connection anomalies (b_K, b_{CK}).
We construct a family of chiral anomaly-free supergravity theories in D=6 starting from D=7 supergravity with a gauged noncompact R-symmetry, employing a Horava-Witten bulk-plus-boundary construction. The gauged noncompact R-symmetry yields a positive (de Sitter sign) D=6 scalar field potential. Classical anomaly inflow which is needed to cancel boundary-field loop anomalies requires careful consideration of the gravitational, gauge, mixed and local supersymmetry anomalies. Coupling of boundary hypermultiplets requires care with the Sp(1) gauge connection required to obtain quaternionic Kahler target manifolds in D=6. This class of gauged R-symmetry models may be of use as starting points for further compactifications to D=4 that take advantage of the positive scalar potential, such as those proposed in the scenario of supersymmetry in large extra dimensions.
We solve the Wess-Zumino consistency conditions of $mathcal{N}=1$ off-shell conformal supergravity in four dimensions and determine the general form of the superconformal anomalies for arbitrary $a$ and $c$ anomaly coefficients to leading non trivial order in the gravitino. Besides the well known Weyl and $R$-symmetry anomalies, we compute explicitly the fermionic $mathcal{Q}$- and $mathcal{S}$-supersymmetry anomalies. In particular, we show that $mathcal{Q}$-supersymmetry is anomalous if and only if $R$-symmetry is anomalous. The $mathcal{Q}$- and $mathcal{S}$-supersymmetry anomalies give rise to an anomalous supersymmetry transformation for the supercurrent on curved backgrounds admitting Killing spinors, resulting in a deformed rigid supersymmetry algebra. Our results may have implications for supersymmetric localization and supersymmetry phenomenology. Analogous results are expected to hold in dimensions two and six and for other supergravity theories. The present analysis of the Wess-Zumino consistency conditions reproduces the holographic result of arxiv:1703.04299 and generalizes it to arbitrary $a$ and $c$ anomaly coefficients.
We obtain Yang-Mills $SU(2)times G$ gauged supergravity in three dimensions from $SU(2)$ group manifold reduction of (1,0) six dimensional supergravity coupled to an anti-symmetric tensor multiplet and gauge vector multiplets in the adjoint of $G$. The reduced theory is consistently truncated to $N=4$ 3D supergravity coupled to $4(1+textrm{dim}, G)$ bosonic and $4(1+textrm{dim}, G)$ fermionic propagating degrees of freedom. This is in contrast to the reduction in which there are also massive vector fields. The scalar manifold is $mathbf{R}times frac{SO(3,, textrm{dim}, G)}{SO(3)times SO(textrm{dim}, G)}$, and there is a $SU(2)times G$ gauge group. We then construct $N=4$ Chern-Simons $(SO(3)ltimes mathbf{R}^3)times (Gltimes mathbf{R}^{textrm{dim}G})$ three dimensional gauged supergravity with scalar manifold $frac{SO(4,,1+textrm{dim}G)}{SO(4)times SO(1+textrm{dim}G)}$ and explicitly show that this theory is on-shell equivalent to the Yang-Mills $SO(3)times G$ gauged supergravity theory obtained from the $SU(2)$ reduction, after integrating out the scalars and gauge fields corresponding to the translational symmetries $mathbf{R}^3times mathbf{R}^{textrm{dim}, G}$.
This paper presents a projective superspace formulation for 4D N = 2 matter-coupled supergravity. We first describe a variant superspace realization for the N = 2 Weyl multiplet. It differs from that proposed by Howe in 1982 by the choice of the structure group (SO(3,1) x SU(2) versus SO(3,1) x U(2)), which implies that the super-Weyl transformations are generated by a covariantly chiral parameter instead of a real unconstrained one. We introduce various off-shell supermultiplets which are curved superspace analogues of the superconformal projective multiplets in global supersymmetry and which describe matter fields coupled to supergravity. A manifestly locally supersymmetric and super-Weyl invariant action principle is given. Off-shell locally supersymmetric nonlinear sigma models are presented in this new superspace.
We consider Abelian tensor hierarchy in four-dimensional ${cal N}=1$ supergravity in the conformal superspace formalism, where the so-called covariant approach is used to antisymmetric tensor fields. We introduce $p$-form gauge superfields as superforms in the conformal superspace. We solve the Bianchi identities under the constraints for the superforms. As a result, each of form fields is expressed by a single gauge invariant superfield. The action of superforms is shown with the invariant superfields. We also show the relation between the superspace formalism and the superconformal tensor calculus.