Do you want to publish a course? Click here

An algebraic model for finite loop spaces

172   0   0.0 ( 0 )
 Added by Ran Levi
 Publication date 2012
  fields
and research's language is English




Ask ChatGPT about the research

The theory of p-local compact groups, developed in an earlier paper by the same authors, is designed to give a unified framework in which to study the p-local homotopy theory of classifying spaces of compact Lie groups and p-compact groups, as well as some other families of a similar nature. It also includes, and in many aspects generalizes, the earlier theory of p-local finite groups. In this paper we show that the theory extends to include classifying spaces of finite loop spaces. Our main theorem is in fact more general and states that in a fibration whose base spaces if the classifying space of a finite group, and whose fibre is the classifying space of a p-local compact group, the total space is, up to p-completion the classifying space of a p-local compact group.



rate research

Read More

We show that the homotopy category of commutative algebra spectra over the Eilenberg-Mac Lane spectrum of the integers is equivalent to the homotopy category of E-infinity-monoids in unbounded chain complexes. We do this by establishing a chain of Quillen equivalences between the corresponding model categories. We also provide a Quillen equivalence to commutative monoids in the category of functors from the category of finite sets and injections to unbounded chain complexes.
The class of loop spaces whose mod p cohomology is Noetherian is much larger than the class of p-compact groups (for which the mod p cohomology is required to be finite). It contains Eilenberg-Mac Lane spaces such as the infinite complex projective space and 3-connected covers of compact Lie groups. We study the cohomology of the classifying space BX of such an object and prove it is as small as expected, that is, comparable to that of BCP^infty. We also show that BX differs basically from the classifying space of a p-compact group in a single homotopy group. This applies in particular to 4-connected covers of classifying spaces of Lie groups and sheds new light on how the cohomology of such an object looks like.
318 - Masaki Kameko 2014
For n>2, we prove the mod 2 cohomology of the finite Chevalley group Spin_n(F_q) is isomorphic to that of the classifying space of the loop group of the spin group Spin(n).
Among the generalizations of Serres theorem on the homotopy groups of a finite complex we isolate the one proposed by Dwyer and Wilkerson. Even though the spaces they consider must be 2-connected, we show that it can be used to both recover known results and obtain new theorems about p-completed classifying spaces.
In the world of chain complexes E_n-algebras are the analogues of based n-fold loop spaces in the category of topological spaces. Fresse showed that operadic E_n-homology of an E_n-algebra computes the homology of an n-fold algebraic delooping. The aim of this paper is to construct two spectral sequences for calculating these homology groups and to treat some concrete classes of examples such as Hochschild cochains, graded polynomial algebras and chains on iterated loop spaces. In characteristic zero we gain an identification of the summands in Pirashvilis Hodge decomposition of higher order Hochschild homology in terms of derived functors of indecomposables of Gerstenhaber algebras and as the homology of exterior and symmetric powers of derived Kahler differentials.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا