We prove that Killing horizons in massive IIA supergravity preserve an even number of supersymmetries, and that their symmetry algebra contains an $mathfrak{sl}(2, R)$ subalgebra, confirming the conjecture of [5]. We also prove a new class of Lichnerowicz type theorems for connections of the spin bundle whose holonomy is contained in a general linear group.
A three-step procedure is proposed in type IIA string theory to stabilize multiple moduli in a dS vacuum. The first step is to construct a progenitor model with a localized stable supersymmetric Minkowski vacuum, or a discrete set of such vacua. It can be done, for example, using two non-perturbative exponents in the superpotential for each modulus, as in the KL model. A large set of supersymmetric Minkowski vacua with strongly stabilized moduli is protected by a theorem on stability of these vacua in absence of flat directions. The second step involves a parametrically small downshift to a supersymmetric AdS vacuum, which can be achieved by a small change of the superpotential. The third step is an uplift to a dS vacuum with a positive cosmological constant using the $overline {D6}$-brane contribution. Stability of the resulting dS vacuum is inherited from the stability of the original supersymmetric Minkowski vacuum if the supersymmetry breaking in dS vacuum is parametrically small.
Dynamical effects in general relativity have been finally, relatively recently observed by LIGOcite{2016LRR....19....1A}. To be able to measure these signals, great care has to be taken to minimize all sources of noise in the detector. One of the sources of noise is called Newtonian noise. In this article we present an analysis of the dynamical (time dependent) nature of the Newtonian noise. In that respect, it is a misnomer to call it Newtonian noise, the Newtonian theory does not afford any dynamical notion of the gravitational field. The dynamical aspects of the nature of the Newtonian noise have heretofore been disregarded as they were considered negligible. However, we demonstrate that they are indeed not far from the realm of being measurable. They could be used to validate Einsteinian general relativity or to give valuable information on the true dynamical nature of gravity. One fundamental question, for example, is a direct measurement the speed of propagation of gravitational effects and the verification that it is indeed the same as the speed of light. We propose a simple laboratory experiment that could affirm or deny this proposition. We also analyze the possibility of the detection of large geophysical events, such as earthquakes. We find that large seismic events seem to be easily observable with the present ensemble of gravitational wave detectors,. The ensemble of gravitational wave detectors could easily serve as a system of early warning for otherwise catastrophic seismic events.
We argue that classical $(alpha)$ effects qualitatively modify the structure of Euclidean black hole horizons in string theory. While low energy modes experience the geometry familiar from general relativity, high energy ones see a rather different geometry, in which the Euclidean horizon can be penetrated by an amount that grows with the radial momentum of the probe. We discuss this in the exactly solvable SL(2,R)/U(1) black hole, where it is a manifestation of the black hole/Sine-Liouville duality.
It has recently been argued that, classically, massless higher spin theories in AdS_3 have an enlarged W_N-symmetry as the algebra of asymptotic isometries. In this note we provide evidence that this symmetry is realised (perturbatively) in the quantum theory. We perform a one loop computation of the fluctuations for a massless spin $s$ field around a thermal AdS_3 background. The resulting determinants are evaluated using the heat kernel techniques of arXiv:0911.5085. The answer factorises holomorphically, and the contributions from the various spin $s$ fields organise themselves into vacuum characters of the W_N symmetry. For the case of the hs(1,1) theory consisting of an infinite tower of massless higher spin particles, the resulting answer can be simply expressed in terms of (two copies of) the MacMahon function.
Ladder operators can be useful constructs, allowing for unique insight and intuition. In fact, they have played a special role in the development of quantum mechanics and field theory. Here, we introduce a novel type of ladder operators, which map a scalar field onto another massive scalar field. We construct such operators, in arbitrary dimensions, from closed conformal Killing vector fields, eigenvectors of the Ricci tensor. As an example, we explicitly construct these objects in anti-de Sitter spacetime (AdS) and show that they exist for masses above the Breitenlohner-Freedman (BF) bound. Starting from a regular seed solution of the massive Klein-Gordon equation (KGE), mass ladder operators in AdS allow one to build a variety of regular solutions with varying boundary condition at spatial infinity. We also discuss mass ladder operator in the context of spherical harmonics, and the relation between supersymmetric quantum mechanics and so-called Aretakis constants in an extremal black hole.