Do you want to publish a course? Click here

Predictions of the extent of self-enrichment in oxygen of giant metal-poor HII regions

226   0   0.0 ( 0 )
 Added by Aida Wofford
 Publication date 2009
  fields Physics
and research's language is English
 Authors Aida Wofford




Ask ChatGPT about the research

In general, HII regions do not show clear signs of self-enrichment in products from massive stars (M > 8 M_sun). In order to explore why, I modeled the contamination with Wolf-Rayet star ejecta of metal-poor (Z=0.001) HII regions, ionised either by a 10^6 M_sun cluster of coeval stars (cluster 1), or a cluster resulting from continuous star formation at a rate of 1 M_sun yr^-1 (cluster 2). The clusters have Z=0.001 and a Salpeter initial mass function (IMF) from 0.1 to 120 M_sun. Independent one dimensional constant density simulations of the emission-line spectra of unenriched HII regions were computed at the discrete ages 1, 2, 3, 4, and 5 Myr, with the photoionisation code CLOUDY, using as input, radiative and mechanical stellar feedbacks predicted by the evolutionary synthesis code STARBURST99. Each HII region was placed at the outer radius of the adiabatically expanding superbubble of Mac Low and McCray (1988). For models with thermal and ionisation balance time-scales of less than 1 Myr, and with oxygen emission-line ratios in agreement with observations, the interior of the superbubble and the HII region were uniformly and instantaneously polluted with stellar ejecta predicted by STARBURST99. I obtained a maximum oxygen abundance enhancement of 0.025 dex, with cluster 1, at 4 Myr. It would be unobservable.



rate research

Read More

Oxygen is a powerful tracer element of Galactic chemical evolution. Unfortunately, only a few oxygen lines are available in the ultraviolet-infrared stellar spectra for the reliable determination of its abundance. Moreover, oxygen abundances obtained using different spectral lines often disagree significantly. In this contribution we therefore investigate whether the inadequate treatment of convection in 1D hydrostatic model atmospheres used in the abundance determinations may be responsible for this disagreement. For this purpose, we used VLT CRIRES spectra of three EMP giants, as well as 3D hydrodynamical CO$^5$BOLD and 1D hydrostatic LHD model atmospheres, to investigate the role of convection in the formation of infrared (IR) OH lines. Our results show that the presence of convection leads to significantly stronger IR OH lines. As a result, the difference in the oxygen abundance determined from IR OH lines with 3D hydrodynamical and classical 1D hydrostatic model atmospheres may reach -0.2 ... -0.3 dex. In case of the three EMP giants studied here, we obtain a good agrement between the 3D LTE oxygen abundances determined by us using vibrational-rotational IR OH lines in the spectral range of 1514-1626 nm, and oxygen abundances determined from forbidden [O I] 630 nm line in previous studies.
We present C and O abundances in the Magellanic Clouds derived from deep spectra of HII regions. The data have been taken with the Ultraviolet-Visual Echelle Spectrograph at the 8.2-m VLT. The sample comprises 5 HII regions in the Large Magellanic Cloud (LMC) and 4 in the Small Magellanic Cloud (SMC). We measure pure recombination lines (RLs) of CII and OII in all the objects, permitting to derive the abundance discrepancy factors (ADFs) for O^2+, as well as their O/H, C/H and C/O ratios. We compare the ADFs with those of other HII regions in different galaxies. The results suggest a possible metallicity dependence of the ADF for the low-metallicity objects, but more uncertain for high-metallicity objects. We compare nebular and B-type stellar abundances and we find that the stellar abundances agree better with the nebular ones derived from collisionally excited lines (CELs). Comparing these results with other galaxies we observe that stellar abundances seem to agree better with the nebular ones derived from CELs in low-metallicity environments and from RLs in high-metallicity environments. The C/H, O/H and C/O ratios show almost flat radial gradients, in contrast with the spiral galaxies where such gradients are negative. We explore the chemical evolution analysing C/O vs. O/H and comparing with the results of HII regions in other galaxies. The LMC seems to show a similar chemical evolution to the external zones of small spiral galaxies and the SMC behaves as a typical star-forming dwarf galaxy.
We present our second set of results from our mid-infrared imaging survey of Milky Way Giant HII regions. We used the FORCAST instrument on the Stratospheric Observatory For Infrared Astronomy to obtain 20 and 37$mu$m images of the central ~10X10 area of M17. We investigate the small- and large-scale properties of M17 using our data in conjunction with previous multi-wavelength observations. The spectral energy distributions of individual compact sources were constructed with Spitzer-IRAC, SOFIA-FORCAST, and Herschel-PACS photometry data and fitted with massive young stellar object (MYSO) models. Seven sources were found to match the criteria for being MYSO candidates, four of which are identified here for the first time, and the stellar mass of the most massive object, UC1, is determined to be 64 solar mass. We resolve the extended mid-infrared emission from the KW Object, and suggest that the angle of this extended emission is influenced by outflow. IRS5 is shown to decrease in brightness as a function of wavelength from the mid- to far-infrared, and has several other indicators that point to it being an intermediate mass Class II object and not a MYSO. We find that the large-scale appearance of emission in M17 at 20$mu$m is significantly affected by contamination from the [SIII] emission line from the ionized gas of the Giant HII region. Finally, a number of potential evolutionary tracers yield a consistent picture suggesting that the southern bar of M17 is likely younger than the northern bar.
Here we report the first spatially resolved spectroscopic study for the galaxy PHL293B using the high-resolution GTC/MEGARA IFU. PHL293B is a local, extremely metal-poor, high ionization galaxy. This makes PHL 293B an excellent analogue for galaxies in the early Universe. The MEGARA aperture (~12.5x 11.3) covers the entire PHL 293B main body and its far-reaching ionized gas. We created and discussed maps of all relevant emission lines, line ratios and physical-chemical properties of the ionized ISM. The narrow emission gas appears to be ionized mainly by massive stars according to the observed diganostic line ratios, regardless of the position across the MEGARA aperture. We detected low intensity broad emission components and blueshifted absorptions in the Balmer lines (H$alpha$,H$beta$) which are located in the brightest zone of the galaxy ISM. A chemically homogeneity, across hundreds of parsecs, is observed in O/H. We take the oxygen abundance 12+log(O/H)=7.64 $pm$ 0.06 derived from the PHL293B integrated spectrum as the representative metallicity for the galaxy. Our IFU data reveal for the first time that the nebular HeII4686 emission from PHL 293B is spatially extended and coincident with the ionizing stellar cluster, and allow us to compute its absolute HeII ionizing photon flux. Wolf-Rayet bumps are not detected excluding therefore Wolf-Rayet stars as the main HeII excitation source. The origin of the nebular HeII4686 is discussed.
Context. The derived physical parameters for young HII regions are normally determined assuming the emission region to be optically thin. However, this assumption is unlikely to hold for young HII regions such as hyper-compact HII(HCHII) and ultra-compact HII(UCHII) regions and leads to the underestimation of their properties. This can be overcome by fitting the SEDs over a wide range of radio frequencies. Aims. The two primary goals of this study are (1) to determine the physical properties of young HII regions from radio SEDs in the search for potential HCHII regions, and (2) to use these physical properties to investigate their evolution. Method. We used the Karl G. Jansky Very Large Array (VLA) to observe the X-band and K-band with angular resolutions of ~1.7 and ~0.7, respectively, toward 114 HII regions with rising-spectra between 1-5 GHz. We complement our observations with VLA archival data and construct SEDs in the range of 1-26 GHz and model them assuming an ionization-bounded HII region with uniform density. Results. Our sample has a mean electron density of ne=1.6E4cm^{-3}, diameter diam=0.14pc, and emission measure EM = 1.9E7pc*cm^{-6}. We identify 16 HCHII region candidates and 8 intermediate objects between the classes of HCHII and UCHII regions. The ne, diam, and EM change as expected, but the Lyman continuum flux is relatively constant over time. We find that about 67% of Lyman-continuum photons are absorbed by dust within these HII regions and the dust absorption fraction tends to be more significant for more compact and younger HII regions. Conclusion. Young HII regions are commonly located in dusty clumps; HCHII regions and intermediate objects are often associated with various masers, outflows, broad radio recombination lines, and extended green objects, and the accretion at the two stages tends to be quickly reduced or halted.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا