Do you want to publish a course? Click here

Level density of a Bose gas: beyond the saddle point approximation

141   0   0.0 ( 0 )
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

The present article is concerned with the use of approximations in the calculation of the many-body density of states (MBDS) of a system with total energy E, composed by N bosons. In the mean-field framework, an integral expression for MBDS, which is proper to be performed by asymptotic expansions, can be derived. However, the standard second order steepest descent method cannot be applied to this integral when the ground-state is sufficiently populated. Alternatively, we derive a uniform formula for MBDS, which is potentially able to deal with this regime. In the case of the one-dimensional harmonic oscillator, using results found in the number theory literature, we show that the uniform formula improves the standard expression achieved by means of the second order method.



rate research

Read More

Taking advantage of an exact mapping between a relativistic integrable model and the Lieb-Liniger model we present a novel method to compute expectation values in the Lieb-Liniger Bose gas both at zero and finite temperature. These quantities, relevant in the physics of one-dimensional ultracold Bose gases, are expressed by a series that has a remarkable behavior of convergence. Among other results, we show the computation of the three-body expectation value at finite temperature, a quantity that rules the recombination rate of the Bose gas.
Describing and understanding the motion of quantum gases out of equilibrium is one of the most important modern challenges for theorists. In the groundbreaking Quantum Newton Cradle experiment [Kinoshita, Wenger and Weiss, Nature 440, 900, 2006], quasi-one-dimensional cold atom gases were observed with unprecedented accuracy, providing impetus for many developments on the effects of low dimensionality in out-of-equilibrium physics. But it is only recently that the theory of generalized hydrodynamics has provided the adequate tools for a numerically efficient description. Using it, we give a complete numerical study of the time evolution of an ultracold atomic gas in this setup, in an interacting parameter regime close to that of the original experiment. We evaluate the full evolving phase-space distribution of particles. We simulate oscillations due to the harmonic trap, the collision of clouds without thermalization, and observe a small elongation of the actual oscillation period and cloud deformations due to many-body dephasing. We also analyze the effects of weak anharmonicity. In the experiment, measurements are made after release from the one-dimensional trap. We evaluate the gas density curves after such a release, characterizing the actual time necessary for reaching the asymptotic state where the integrable quasi-particle momentum distribution function emerges.
Accurate and useful analytic approximations are developed for order parameter profiles and interfacial tensions of phase-separated binary mixtures of Bose-Einstein condensates. The pure condensates 1 and 2, each of which contains a particular species of atoms, feature healing lengths $xi_1$ and $xi_2$. The inter-atomic interactions are repulsive. In particular, the effective inter-species repulsive interaction strength is $K$. A triple-parabola approximation (TPA) is proposed, to represent closely the energy density featured in Gross-Pitaevskii (GP) theory. This TPA allows us to define a model, which is a handy alternative to the full GP theory, while still possessing a simple analytic solution. The TPA offers a significant improvement over the recently introduced double-parabola approximation (DPA). In particular, a more accurate amplitude for the wall energy (of a single condensate) is derived and, importantly, a more correct expression for the interfacial tension (of two condensates) is obtained, which describes better its dependence on $K$ in the strong segregation regime, while also the interface profiles undergo a qualitative improvement.
By calculating correlation functions for the Lieb-Liniger model based on the algebraic Bethe ansatz method, we conduct a finite-size scaling analysis of the eigenstate thermalization hypothesis (ETH) which is considered to be a possible mechanism of thermalization in isolated quantum systems. We find that the ETH in the weak sense holds in the thermodynamic limit even for an integrable system although it does not hold in the strong sense. Based on the result of the finite-size scaling analysis, we compare the contribution of the weak ETH to thermalization with that of yet another thermalization mechanism, the typicality, and show that the former gives only a logarithmic correction to the latter.
We present a microscopic theory of the second order phase transition in an interacting Bose gas that allows one to describe formation of an ordered condensate phase from a disordered phase across an entire critical region continuously. We derive the exact fundamental equations for a condensate wave function and the Green functions, which are valid both inside and outside the critical region. They are reduced to the usual Gross-Pitaevskii and Beliaev-Popov equations in a low-temperature limit outside the critical region. The theory is readily extendable to other phase transitions, in particular, in the physics of condensed matter and quantum fields.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا