Do you want to publish a course? Click here

Finite-Size Scaling Analysis of the Eigenstate Thermalization Hypothesis in a One-Dimensional Interacting Bose gas

248   0   0.0 ( 0 )
 Added by Tatsuhiko N. Ikeda
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

By calculating correlation functions for the Lieb-Liniger model based on the algebraic Bethe ansatz method, we conduct a finite-size scaling analysis of the eigenstate thermalization hypothesis (ETH) which is considered to be a possible mechanism of thermalization in isolated quantum systems. We find that the ETH in the weak sense holds in the thermodynamic limit even for an integrable system although it does not hold in the strong sense. Based on the result of the finite-size scaling analysis, we compare the contribution of the weak ETH to thermalization with that of yet another thermalization mechanism, the typicality, and show that the former gives only a logarithmic correction to the latter.



rate research

Read More

251 - Toru Yoshizawa , Eiki Iyoda , 2017
A plausible mechanism of thermalization in isolated quantum systems is based on the strong version of the eigenstate thermalization hypothesis (ETH), which states that all the energy eigenstates in the microcanonical energy shell have thermal properties. We numerically investigate the ETH by focusing on the large deviation property, which directly evaluates the ratio of athermal energy eigenstates in the energy shell. As a consequence, we have systematically confirmed that the strong ETH is indeed true even for near-integrable systems, where we found that the finite-size scaling of the ratio of athermal eigenstates is double exponential. Our result illuminates universal behavior of quantum chaos, and suggests that large deviation analysis would serve as a powerful method to investigate thermalization in the presence of the large finite-size effect.
Many phases of matter, including superconductors, fractional quantum Hall fluids and spin liquids, are described by gauge theories with constrained Hilbert spaces. However, thermalization and the applicability of quantum statistical mechanics has primarily been studied in unconstrained Hilbert spaces. In this article, we investigate whether constrained Hilbert spaces permit local thermalization. Specifically, we explore whether the eigenstate thermalization hypothesis (ETH) holds in a pinned Fibonacci anyon chain, which serves as a representative case study. We first establish that the constrained Hilbert space admits a notion of locality, by showing that the influence of a measurement decays exponentially in space. This suggests that the constraints are no impediment to thermalization. We then provide numerical evidence that ETH holds for the diagonal and off-diagonal matrix elements of various local observables in a generic disorder-free non-integrable model. We also find that certain non-local observables obey ETH.
129 - Zhihao Lan , Stephen Powell 2017
We use exact diagonalization to study the eigenstate thermalization hypothesis (ETH) in the quantum dimer model on the square and triangular lattices. Due to the nonergodicity of the local plaquette-flip dynamics, the Hilbert space, which consists of highly constrained close-packed dimer configurations, splits into sectors characterized by topological invariants. We show that this has important consequences for ETH: We find that ETH is clearly satisfied only when each topological sector is treated separately, and only for moderate ratios of the potential and kinetic terms in the Hamiltonian. By contrast, when the spectrum is treated as a whole, ETH breaks down on the square lattice, and apparently also on the triangular lattice. These results demonstrate that quantum dimer models have interesting thermalization dynamics.
By exploring a phase space hydrodynamics description of one-dimensional free Fermi gas, we discuss how systems settle down to steady states described by the generalized Gibbs ensembles through quantum quenches. We investigate time evolutions of the Fermions which are trapped in external potentials or a circle for a variety of initial conditions and quench protocols. We analytically compute local observables such as particle density and show that they always exhibit power law relaxation at late times. We find a simple rule which determines the power law exponent. Our findings are, in principle, observable in experiments in an one dimensional free Fermi gas or Tonks gas (Bose gas with infinite repulsion).
240 - S. Sorg , L. Vidmar , L. Pollet 2014
Motivated by recent experiments, we study the relaxation dynamics and thermalization in the one-dimensional Bose-Hubbard model induced by a global interaction quench. Specifically, we start from an initial state that has exactly one boson per site and is the ground state of a system with infinitely strong repulsive interactions at unit filling. Using exact diagonalization and the density matrix renormalization group method, we compute the time dependence of such observables as the multiple occupancy and the momentum distribution function. Typically, the relaxation to stationary values occurs over just a few tunneling times. The stationary values are identical to the so-called diagonal ensemble on the system sizes accessible to our numerical methods and we further observe that the micro-canonical ensemble describes the steady state of many observables reasonably well for small and intermediate interaction strength. The expectation values of observables in the canonical ensemble agree quantitatively with the time averages obtained from the quench at small interaction strengths, and qualitatively provide a good description of steady-state values even in parameter regimes where the micro-canonical ensemble is not applicable due to finite-size effects. We discuss our numerical results in the framework of the eigenstate thermalization hypothesis. Moreover, we also observe that the diagonal and the canonical ensemble are practically identical for our initial conditions already on the level of their respective energy distributions for small interaction strengths. Finally, we discuss implications of our results for the interpretation of a recent sudden expansion experiment [Phys. Rev. Lett. 110, 205301 (2013)], in which the same interaction quench was realized.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا