The spin-wave excitation spectrum, the magnetization, and the N{e}el temperature for the quasi-two-dimensional spin-1/2 antiferromagnetic Heisenberg model with compass-model interaction in the plane proposed for iridates are calculated in the random phase approximation. The spin-wave spectrum agrees well with data of Lanczos diagonalization. We find that the Neel temperature is enhanced by the compass-model interaction and is close to the experimental value for Ba2IrO4.
A Green-function theory for the dynamic spin susceptibility in the square-lattice spin-1/2 antiferromagnetic compass-Heisenberg model employing a generalized mean-field approximation is presented. The theory describes magnetic long-range order (LRO) and short-range order (SRO) at arbitrary temperatures. The magnetization, Neel temperature T_N, specific heat, and uniform static spin susceptibility $chi$ are calculated self-consistently. As the main result, we obtain LRO at finite temperatures in two dimensions, where the dependence of T_N on the compass-model interaction is studied. We find that T_N is close to the experimental value for Ba2IrO4. The effects of SRO are discussed in relation to the temperature dependence of $chi$.
We consider the quasi-two-dimensional pseudo-spin-1/2 Kitaev - Heisenberg model proposed for A2IrO3 (A=Li, Na) compounds. The spin-wave excitation spectrum, the sublattice magnetization, and the transition temperatures are calculated in the random phase approximation (RPA) for four different ordered phases, observed in the parameter space of the model: antiferomagnetic, stripe, ferromagnetic, and zigzag phases. The N{e}el temperature and temperature dependence of the sublattice magnetization are compared with the experimental data on Na2IrO3.
We present a spin-rotation-invariant Green-function theory for the dynamic spin susceptibility in the spin-1/2 antiferromagnetic Heisenberg model on a stacked honeycomb lattice. Employing a generalized mean-field approximation for arbitrary temperatures, the thermodynamic quantities (two-spin correlation functions, internal energy, magnetic susceptibility, staggered magnetization, Neel temperature, correlation length) and the spin-excitation spectrum are calculated by solving a coupled system of self-consistency equations for the correlation functions. The temperature dependence of the magnetic (uniform static) susceptibility is ascribed to antiferromagnetic short-range order. The N{e}el temperature is calculated for arbitrary interlayer couplings. Our results are in a good agreement with numerical computations for finite clusters and with available experimental data on the beta-Cu2V2O2 compound.
We study classical Heisenberg antiferromagnets with uniaxial exchange anisotropy and a cubic anisotropy term on simple cubic lattices in an external magnetic field using ground state considerations and extensive Monte Carlo simulations. In addition to the antiferromagnetic phase field--induced spin--flop and non--collinear, biconical phases may occur. Phase diagrams and critical as well as multicritical phenomena are discussed. Results are compared to previous findings.
Counterintuitive order-disorder phenomena emerging in antiferromagnetically coupled spin systems have been reported in various studies. Here we perform a systematic effective field theory analysis of two-dimensional bipartite quantum Heisenberg antiferromagnets subjected to either mutually aligned -- or mutually orthogonal -- magnetic and staggered fields. Remarkably, in the aligned configuration, the finite-temperature uniform magnetization $M_T$ grows as temperature rises. Even more intriguing, in the orthogonal configuration, $M_T$ first drops, goes through a minimum, and then increases as temperature rises. Unmasking the effect of the magnetic field, we furthermore demonstrate that the finite-temperature staggered magnetization $M^H_s$ and entropy density -- both exhibiting non-monotonic temperature dependence -- are correlated. Interestingly, in the orthogonal case, $M^H_s$ presents a maximum, whereas in mutually aligned magnetic and staggered fields, $M^H_s$ goes through a minimum. The different behavior can be traced back to the existence of an easy XY-plane that is induced by the magnetic field in the orthogonal configuration.
A.A. Vladimirov
,D. Ihle
,N. M. Plakida
.
(2014)
.
"Magnetic order and spin excitations in layered Heisenberg antiferromagnets with compass-model anisotropies"
.
Nikolay Plakida
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا