Do you want to publish a course? Click here

Limitation of EFT for DM interactions at the LHC

104   0   0.0 ( 0 )
 Added by Giorgio Busoni
 Publication date 2014
  fields
and research's language is English




Ask ChatGPT about the research

We generalize in several directions our recent analysis of the limitations to the use of the effective field theory approach to study dark matter at the LHC. Firstly, we study the full list of operators connecting fermion DM to quarks and gluons, corresponding to integrating out a heavy mediator in the $s$-channel; secondly, we provide analytical results for the validity of the EFT description for both $sqrt{s}=8$ {rm TeV} and $14$ {rm TeV}; thirdly, we make use of a MonteCarlo event generator approach to assess the validity of our analytical conclusions. We apply our results to revisit the current collider bounds on the ultraviolet cut-off scale of the effective field theory and show that these bounds are weakened once the validity conditions of the effective field theory are imposed.



rate research

Read More

We propose a new approach to the LHC dark matter search analysis within the effective field theory (EFT) framework by utilising the K-matrix unitarisation formalism. This approach provides a reasonable estimate of the dark matter production cross section at high energies, and hence allows reliable bounds to be placed on the cut-off scale of relevant operators without running into the problem of perturbative unitarity violation. We exemplify this procedure for the effective operator D5 in monojet dark matter searches in the collinear approximation. We compare our bounds to those obtained using the truncation method and identify a parameter region where the unitarisation prescription leads to more stringent bounds.
We investigate the Beyond Standard Model discovery potential in the framework of the Effective Field Theory (EFT) for the same-sign $WW$ scattering process in purely leptonic $W$ decay modes at the High-Luminosity and High-Energy phases of the Large Hadron Collider (LHC). The goal of this paper is to examine the applicability of the EFT approach, with one dimension-8 operator varied at a time, to describe a hypothetical new physics signal in the $WWWW$ quartic coupling. In the considered process there is no experimental handle on the $WW$ invariant mass, and it has previously been shown that the discovery potential at 14 TeV is rather slim. In this paper we report the results calculated for a 27 TeV machine and compare them with the discovery potential obtained at 14 TeV. We find that while the respective discovery regions shift to lower values of the Wilson coefficients, the overall discovery potential of this procedure does not get significantly larger with a higher beam energy.
203 - J. Hirn , A. Martin 2007
New strong interactions at the LHC may exhibit a richer structure than expected from simply rescaling QCD to the electroweak scale. In fact, a departure from rescaled QCD is required for compatibility with electroweak constraints. To navigate the space of possible scenarios, we use a simple framework, based on a 5D model with modifications of AdS geometry in the infrared. In the parameter space, we select two points with particularly interesting phenomenology. For these benchmark points, we explore the discovery of triplets of vector and axial resonances at the LHC.
We study the impact of anomalous gauge boson and fermion couplings on the production of $W^+W^-$ pairs at potential future LHC upgrades and estimate the sensitivity at $sqrt{S}=14$ TeV with $3~ab^{-1}$ and $sqrt{S}=27$ TeV with $15~ab^{-1}$. A general technique for including NLO QCD effects in effective field theory (EFT) fits to kinematic distributions is presented, and numerical results are given for $sqrt{S}=13$ TeV $W^+W^-$ production. Our method allows fits to anomalous couplings at NLO accuracy in any EFT basis and has been implemented in a publicly available version of the POWHEG-BOX. Analytic expressions for the $K$-factors relevant for $13$ TeV total cross sections are given for the HISZ and Warsaw EFT bases and differential $K$-factors can be obtained using the supplemental material. Our study demonstrates the necessity of including anomalous $Z$- fermion couplings in the extraction of limits on anomalous 3-gauge-boson couplings.
We review the recent progress in the theoretical description and experimental observation of multiple parton interactions. Subjects covered include experimental measurements of minimum bias interactions and of the underlying event, models of soft physics implemented in Monte Carlo generators, developments in the theoretical description of multiple parton interactions and phenomenological studies of double parton scattering. This article stems from contributions presented at the Helmholtz Alliance workshop on Multi-Parton Interactions at the LHC, DESY Hamburg, 13-15 September 2010.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا